Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 29, pp 8813–8824 | Cite as

Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging

  • Marie Demeyer
  • Maxence Wisztorski
  • Corentin Decroo
  • Julien De Winter
  • Guillaume Caulier
  • Elise Hennebert
  • Igor Eeckhaut
  • Isabelle Fournier
  • Patrick Flammang
  • Pascal Gerbaux
Research Paper

Abstract

Saponins are secondary metabolites that are abundant and diversified in echinoderms. Mass spectrometry is increasingly used not only to identify saponin congeners within animal extracts but also to decipher the structure/biological activity relationships of these molecules by determining their inter-organ and inter-individual variability. The usual method requires extensive purification procedures to prepare saponin extracts compatible with mass spectrometry analysis. Here, we selected the sea star Asterias rubens as a model animal to prove that direct analysis of saponins can be performed on tissue sections. We also demonstrated that carboxymethyl cellulose can be used as an embedding medium to facilitate the cryosectioning procedure. Matrix-assisted laser desorption/ionization (MALDI) imaging was also revealed to afford interesting data on the distribution of saponin molecules within the tissues. We indeed highlight that saponins are located not only inside the body wall of the animals but also within the mucus layer that probably protects the animal against external aggressions.

Graphical Abstract

Saponins are the most abundant secondary metabolites in sea stars. They should therefore participate in important biological activities. Here, MALDI imaging is presented as a powerful method to determine the spatial distribution of saponins within the animal tissues. The inhomogeneity of the intra-organ saponin distribution is highlighted, paving the way for future elegant structure/activity relationship investigations.

Keywords

Saponin Sea stars Mass spectrometry MALDI-mass spectrometry imaging 

Notes

Acknowledgments

The MS laboratory acknowledges the “Fonds de la Recherche Scientifique (FRS-FNRS)” for its contribution to the acquisition of the Waters Q-ToF Premier Mass Spectrometer. E.H. and P.F. are, respectively, Postdoctoral Researcher and Research Director of the FRS-FNRS. M.D. is grateful to the F.R.I.A. for financial support. This work was supported by the FRFC research project no. T.0056.13 and in part by the EU FP7-OCEAN Project “Low-toxic cost-efficient environment-friendly antifouling materials” (BYEFOULING) under Grant Agreement no. 612717.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2015_9044_MOESM1_ESM.pdf (6.6 mb)
ESM 1 (PDF 6773 kb)

References

  1. 1.
    Li R, Zhou Y, Wu Z, Ding L (2006) ESI-Qq TOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica. J Mass Spectrom 41:1–22CrossRefGoogle Scholar
  2. 2.
    Mackie AM, Turner AB (1970) Partial characterization of biologically active steroid glycoside isolated from the starfish Marthasterias glacialis. Biochem J 117:543–550CrossRefGoogle Scholar
  3. 3.
    Kitagawa I, Kobayashi M (1977) On the structure of the major saponin from the starfish Acanthaster planci. Tetrahedron Lett 10:859–862CrossRefGoogle Scholar
  4. 4.
    Nigrelli RF (1952) The effect of holothurin on fish, and mice with sarcoma 180. Zoologica 37:89–90Google Scholar
  5. 5.
    Yamanouchi T (1955) On the poisonous substance contained in holothurians. Publ Seto Mar Biol Lab 4:183–203Google Scholar
  6. 6.
    Kubanek J, Pawlik J, Eve T, Fenical W (2000) Triterpene glycosides defend the Caribbean reef sponge Erylus formosus from predatory fishes. Mar Ecol Prog Ser 207:69–77CrossRefGoogle Scholar
  7. 7.
    Kubanek J, Walen K, Engel S, Kelly S, Henkel T, Fenical W, Pawlik J (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 13:125–136CrossRefGoogle Scholar
  8. 8.
    Van Dyck S, Gerbaux P, Flammang P (2009) Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 152:124–134CrossRefGoogle Scholar
  9. 9.
    Bondoc KG, Lee H, Cruz LJ, Lebrilla CB, Juinio-Menez MA (2013) Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comp Biochem Physiol B Biochem Mol Biol 166:182–193CrossRefGoogle Scholar
  10. 10.
    Bahrami Y, Franco CMM (2015) Structure elucidation of new acetylated saponins, lessoniosides A, B, C, D, and E, and non-acetylated SAponins, lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 13:597–617CrossRefGoogle Scholar
  11. 11.
    Maier M (2008) Biological activities of sulfated glycosides from echinoderms. Stud Nat Prod Chem 35:311–354CrossRefGoogle Scholar
  12. 12.
    D’Auria MV, Minale L, Riccio R (1993) Polyoxygenated steroids of marine origin. Chem Rev 93:1839–1895CrossRefGoogle Scholar
  13. 13.
    Hostettmann K, Martson A (1995) Chemistry & pharmacology of natural products, Saponins. Cambridge University PressGoogle Scholar
  14. 14.
    Prokof’eva NG, Chaikina EL, Kicha AA, Ivanchina NV (2003) Biological activities of steroid glycosides from starfish. Comp Biochem Physiol B Biochem Mol Biol 134:695–701CrossRefGoogle Scholar
  15. 15.
    Stonik VA, Kalinin VI, Avilov SA (1999) Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8:235–248Google Scholar
  16. 16.
    Kalinin VI, Prokofieva NG, Likhatskaya GN, Schentsova EB, Agafonova IG, Avilov SA, Drozdova OA (1996) Hemolytic activities of triterpene glycosides from the holothurians order dendrochirotida: some trends in the evolution of this group of toxins. Toxicon 34:475–483CrossRefGoogle Scholar
  17. 17.
    Jorg MA, Vera K, Sven BA, Soren B (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457CrossRefGoogle Scholar
  18. 18.
    Burnell DJ, Apsimon JW (1983) Echinoderm Saponins. Mar Nat Prod 5:287–389CrossRefGoogle Scholar
  19. 19.
    Kalinin VI, Anisimov MM, Prokofieva NG, Avilov SA, Afiyatullov SH, Stonik VA (1995) Biological activities and biological role of triterpene glycosides from holothuroids. Echinoderm Studies Balkerma, Rotterdam, pp 139–181Google Scholar
  20. 20.
    Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs 9:1761–1805CrossRefGoogle Scholar
  21. 21.
    Mayo P, Mackie AM (1976) Studies of avoidance reactions in several species of predatory British Seastars (Echinodermata: Asteroidea). Mar Biol 38:41–49CrossRefGoogle Scholar
  22. 22.
    Harvey C, Garneau FX, Himmelman J (1987) Chemodetection of predatory seaster Leptasterias Polaris by whelk Buccinum undatum. Mar Ecol Prog Ser 40:79–86CrossRefGoogle Scholar
  23. 23.
    Mackie AM, Lasker R, Grant PT (1968) Avoidance reactions of mollusc Buccinum undatum to saponin-like surface-active substances in extracts of thenstarfish Asterias rubens and Martasterias glacialis. Comp Biochem Physiol B Biochem Mol Biol 26:415–428Google Scholar
  24. 24.
    Barkus G (1974) Toxicity in holothurians: a geographical pattern. Biotropica 6:229–236CrossRefGoogle Scholar
  25. 25.
    Garneau FX, Harvey C, Simard SL, Apsimon J, Burnell D, Himmelman J (1989) The distribution of asterosaponins in various body components of starfish Leptasterias Polaris. Comp Biochem Physiol B Biochem Mol Biol 92:411–416CrossRefGoogle Scholar
  26. 26.
    Kisha AA, Ivanchina NV, Kalinovsky AI, Dmitrenok PS, Stonik VA (2001) Sulfated steroid compounds from the starfish Aphelasterias japonica of the Kuril population. Comp Biochem Physiol B Biochem Mol Biol 128:43–52CrossRefGoogle Scholar
  27. 27.
    Demeyer M, De Winter J, Caulier G, Eeckhaut I, Flammang P, Gerbaux P (2014) Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 168:1–11CrossRefGoogle Scholar
  28. 28.
    Mackie AM, Singh H, Owen J (1977) Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp Biochem Physiol B Biochem Mol Biol 56:9–14CrossRefGoogle Scholar
  29. 29.
    Voogt PA, Van Rheenen JWA (1982) Carbohydrate content and composition of asterosaponins from different organs of the sea star Asterias rubens: relation to their haemolytic activity and implications for their biosynthesis. Comp Biochem Physiol B Biochem Mol Biol 72:683–688CrossRefGoogle Scholar
  30. 30.
    Voogt PA, Huiskamp R (1979) Sex-dependance and seasonal variation of saponins in the gonads of the starfish Asterias rubens: their relation to reproduction. Comp Biochem Physiol 62:1049–1055CrossRefGoogle Scholar
  31. 31.
    Van Dyck S, Caulier G, Todesco M, Gerbaux P, Fournier I, Wisztorski M, Flammang P (2011) The triterpene glycosides of Holothuria forskali: usefulness and efficiency as a chemical defense mechanism against predatory fish. J Exp Biol 214:1347–1356CrossRefGoogle Scholar
  32. 32.
    Caulier G, Flammang P, Gerbaux P, Eeckhaut I (2013) When a repellent becomes an attractant: harmful saponins are kairomones attracting the symbiotic Harlequin crab. Sci Rep 3:1–5CrossRefGoogle Scholar
  33. 33.
    Thomas GE, Gruffydd LLD (1971) The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar Biol 10:87–93CrossRefGoogle Scholar
  34. 34.
    Naruse M, Suetomo H, Matsubara T, Sato T, Yanagawa H, Hoshi M, Matsumoto M (2010) Acrosome reaction-related steroidal saponin, Co-ARIS, from the starfish induces structural changes in microdomains. Dev Biol 347:147–153CrossRefGoogle Scholar
  35. 35.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  36. 36.
    Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M (2009) MALDI imaging mass spectrometry, state of the art technology in clinical proteomics. Mol Cell Proteomics 8:2023–2033CrossRefGoogle Scholar
  37. 37.
    Sandvoss M, Huong Pham L, Levsen K, Preiss A (2000) Isolation and strucural elucidation of steroid oligoglycosides from the starfish Asterias rubens by means of direct online LC-NMR-MS hyphenation and one- and two-dimensional NMR investigations. Eur J Org Chem 7:1253–1262CrossRefGoogle Scholar
  38. 38.
    Sandvoss M, Weltring A, Preiss A, Levsen K, Wuensch G (2001) Combination of matrix solid-phase dispersion extraction and direct on-line liquid chromatography-nuclear magnetic resonance spectroscopy-tandem mass spectrometry as a new efficient approach for the rapid screening of natural products: application to the total asterosaponin fraction of the starfish Asterias rubens. J Chromatogr A 917:75–86CrossRefGoogle Scholar
  39. 39.
    Sandvoss M, Preiss A, Levsen K, Weisemann R (2003) Two new asterosaponins from the starfish Asterias rubens: application of a cryogenic NMR probe head. Magn Reson Chem 41:949–954CrossRefGoogle Scholar
  40. 40.
    De Marino S, Iorizzi M, Palagiano E, Zollo F, Roussakis C (1998) Starfish saponins 55 isolation, structure elucidation, and biological activity of the steroid oligoglycosides from an Antartic starfish of the family Asteriidae. J Nat Prod 61:1319–1327CrossRefGoogle Scholar
  41. 41.
    Kornprobst JM, Sallenave C, Barnathan G (1998) Sulfated compounds from marine organisms. Comp Biochem Physiol B Biochem Mol Biol 119:1–51CrossRefGoogle Scholar
  42. 42.
    Riccio R, Iorizzi M, Minale L (1986) Starfish saponins isolation of sixteen steroidal glycosides and three polyhydroxysteroids from the mediterreanen starfish Coscinasterias tenuispina. Bull Soc Chim Belg 95:869–893CrossRefGoogle Scholar
  43. 43.
    Tang HF, Yi YH, Li L, Sun P, Zhang SQ, Zhao YP (2005) Bioactive asterosaponins from the starfish Culcita novaeguineae. J Nat Prod 68:337–341CrossRefGoogle Scholar
  44. 44.
    Nelson K, Daniels G, Fournie J, Hemmer M (2013) Optimization of whole-body Zebrafish sectioning methods for mass spectrometry imaging. J Biomol Tech 24:119–127CrossRefGoogle Scholar
  45. 45.
    Hennebert E, Wattiez R, Waite JH, Flammang P (2012) Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling 28:289–303CrossRefGoogle Scholar
  46. 46.
    Jangoux M, Vloebergh M (1973) Contribution à l’étude du cycle annuel de reproduction d’une population d’Asterias rubens (Echinodermata, Asteroidea) du littoral belge. Neth J Sea Res 6:389–408CrossRefGoogle Scholar
  47. 47.
    Snovida SI, Rak-Banville JM, Perreault H (2008) On the use of DHB/aniline and DHB/N, N-dimethylaniline matrices for improved detection of carbohydrates: automated identification of oligosaccharides and quantitative analysis of sialylated glycans by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 19:1138–1146CrossRefGoogle Scholar
  48. 48.
    Heeren RMA, Smith DF, Stauber J, Kukrer-Kaletas B, MacAleese L (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20:1006–1014CrossRefGoogle Scholar
  49. 49.
    Van Dyck S, Gerbaux P, Flammang P (2010) Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Mar Drugs 8:173–189CrossRefGoogle Scholar
  50. 50.
    Hermans C (1983) The duo-gland adhesive system. Oceanogr Mar Biol Annu Rev 21:283–339Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marie Demeyer
    • 1
    • 2
  • Maxence Wisztorski
    • 3
  • Corentin Decroo
    • 1
  • Julien De Winter
    • 1
  • Guillaume Caulier
    • 2
  • Elise Hennebert
    • 2
  • Igor Eeckhaut
    • 2
  • Isabelle Fournier
    • 3
  • Patrick Flammang
    • 2
  • Pascal Gerbaux
    • 1
  1. 1.Organic Synthesis and Mass Spectrometry LaboratoryUniversity of Mons—UMONSMonsBelgium
  2. 2.Biology of Marine Organisms and BiomimeticsUniversity of Mons—UMONSMonsBelgium
  3. 3.Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM)Villeneuve D’AscqFrance

Personalised recommendations