Abstract
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol–gel derived hybrid inorganic–organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L−1 and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0–60.5 ng mL−1 (UV 328) and 69.3–99.2 ng mL−1 (UV 360) in the three sewage water samples analysed.
This is a preview of subscription content,
to check access.







Similar content being viewed by others
References
Spietelun A, Marcinkowski Ł, de la Guardia M, Namieśnik J (2013) Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 1321:1–13. doi:10.1016/j.chroma.2013.10.030
Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2010) Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples. Anal Bioanal Chem 397:2833–2839. doi:10.1007/s00216-010-3743-3
Montesdeoca Esponda S, Torres Padrón ME, Sosa Ferrera Z, Santana Rodríguez JJ (2009) Solid-phase microextraction with micellar desorption and HPLC-fluorescence detection for the analysis of fluoroquinolones residues in water samples. Anal Bioanal Chem 394:927–935. doi:10.1007/s00216-009-2629-8
Mahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ (2011) Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. TrAC Trends Anal Chem 30:731–748. doi:10.1016/j.trac.2011.01.011
Huang Z, Lee HK (2012) Materials-based approaches to minimizing solvent usage in analytical sample preparation. TrAC Trends Anal Chem 39:228–244. doi:10.1016/j.trac.2012.05.007
Xu J, Zheng J, Tian J et al (2013) New materials in solid-phase microextraction. TrAC Trends Anal Chem 47:68–83. doi:10.1016/j.trac.2013.02.012
Ho TD, Canestraro AJ, Anderson JL (2011) Ionic liquids in solid-phase microextraction: a review. Anal Chim Acta 695:18–43. doi:10.1016/j.aca.2011.03.034
Souza Silva EA, Risticevic S, Pawliszyn J (2013) Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends Anal Chem 43:24–36. doi:10.1016/j.trac.2012.10.006
Alizadeh N, Mohammadi A, Tabrizchi M (2008) Rapid screening of methamphetamines in human serum by headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry. J Chromatogr A 1183:21–28. doi:10.1016/j.chroma.2008.01.020
Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13. doi:10.1016/j.aca.2012.12.013
Kabir A, Furton KG, Malik A (2013) Innovations in sol–gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal Chem 45:197–218. doi:10.1016/j.trac.2012.11.014
Kumar A, Gaurav MAK et al (2008) A review on development of solid phase microextraction fibers by sol–gel methods and their applications. Anal Chim Acta 610:1–14. doi:10.1016/j.aca.2008.01.028
Kumar R, Gaurav H et al (2014) Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. J Chromatogr A 1359:16–25. doi:10.1016/j.chroma.2014.07.013
Kabir A, Furton KG (2014) Fabric phase sorptive extractors (FPSE), US Patent Application: 14,216,121 March 17, 2014
Kabir A (2015) Fabric phase sorptive extraction media: a highly effective forensic sample collection and storage device. AAFS 2015 67th Annu. Sci. Meet
Samanidou V, Galanopoulos L-D, Kabir A, Furton KG (2015) Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection. Anal Chim Acta 855:41–50. doi:10.1016/j.aca.2014.11.036
Roldán-Pijuán M, Lucena R, Cárdenas S et al (2015) Stir fabric phase sorptive extraction for the determination of triazine herbicides in environmental waters by liquid chromatography. J Chromatogr A 1376:35–45. doi:10.1016/j.chroma.2014.12.027
Racamonde I, Rodil R, Quintana JB, Sieira BJ, Kabir A, Furton KG, Cela R (2015) Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples. Anal Chim Acta 865:22–30
Kim J-W, Isobe T, Malarvannan G et al (2012) Contamination of benzotriazole ultraviolet stabilizers in house dust from the Philippines: implications on human exposure. Sci Total Environ 424:174–181. doi:10.1016/j.scitotenv.2012.02.040
Balmer ME, Buser H-RR, Müller MD et al (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes. Environ Sci Technol 39:953–962
Kim J-W, Chang K-H, Isobe T, Tanabe S (2011) Acute toxicity of benzotriazole ultraviolet stabilizers on freshwater crustacean (Daphnia pulex). J Toxicol Sci 36:247–251. doi:10.2131/jts.36.247
Casado J, Rodríguez I, Ramil M, Cela R (2013) Polyethersulfone solid-phase microextraction followed by liquid chromatography quadrupole time-of-flight mass spectrometry for benzotriazoles determination in water samples. J Chromatogr A 1299:40–47. doi:10.1016/j.chroma.2013.05.061
Liu Y-S, Ying G-G, Shareef A, Kookana RS (2012) Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environ Pollut 165:225–232. doi:10.1016/j.envpol.2011.10.009
Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2011) Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants. Chemosphere 84:1158–1165. doi:10.1016/j.chemosphere.2011.04.003
Zhang Z, Ren N, Li Y-F et al (2011) Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environ Sci Technol 45:3909–3916. doi:10.1021/es2004057
Carpinteiro I, Abuín B, Rodríguez I et al (2010) Headspace solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the sensitive determination of benzotriazole UV stabilizers in water samples. Anal Bioanal Chem 397:829–839. doi:10.1007/s00216-010-3584-0
Segro SS, Malik A (2008) Solvent-resistant sol–gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. J Chromatogr A 1205:26–35. doi:10.1016/j.chroma.2008.07.073
Chong SL, Wang D, Hayes JD et al (1997) Sol–gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Anal Chem 69:3889–3898
Rao AV, Bhagat SD, Hirashima H, Pajonk G (206AD) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285
Tomšič B, Lavrič PK, Simončič B et al (2011) Sol–gel technology for functional finishing of PES fabric by stimuli-responsive microgel. J Sol-Gel Sci Technol 61:463–476. doi:10.1007/s10971-011-2647-9
Gelest I (2013) Silicon compounds: silanes and silicons: a survey of properties and chemistry, 3rd edn. Morrisville, PA, 19067, USA
Guido E, Alongi J, Colleoni C et al (2013) Thermal stability and flame retardancy of polyester fabrics sol–gel treated in the presence of boehmite nanoparticles. Polym Degrad Stab 98:1609–1616. doi:10.1016/j.polymdegradstab.2013.06.021
Shirey R Improvements in SPME reproducibility through enhancements in the fiber manufacturing process. Report (The Tech Newsl from Supleco) 22.4:7–8
Carpinteiro I, Ramil M, Rodríguez I, Nogueira JMF (2012) Combining stir-bar sorptive extraction and large volume injection-gas chromatography–mass spectrometry for the determination of benzotriazole UV stabilizers in wastewater matrices. J Sep Sci 35:459–467. doi:10.1002/jssc.201100448
Serôdio P, Nogueira JM (2004) Multi-residue screening of endocrine disrupters chemicals in water samples by stir bar sorptive extraction-liquid desorption-capillary gas chromatography–mass spectrometry detection. Anal Chim Acta 517:21–32. doi:10.1016/j.aca.2004.04.045
Prieto A, Basauri O, Rodil R et al (2010) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217:2642–2666. doi:10.1016/j.chroma.2009.12.051
Do Rosário PMA, Nogueira JMF (2006) Combining stir bar sorptive extraction and MEKC for the determination of polynuclear aromatic hydrocarbons in environmental and biological matrices. Electrophoresis 27:4694–4702. doi:10.1002/elps.200600210
Montesdeoca-Esponda S, del Toro-Moreno A, Sosa-Ferrera Z, Santana-Rodríguez JJ (2013) Development of a sensitive determination method for benzotriazole UV stabilizers in enviromental water samples with stir bar sorption extraction and liquid desorption prior to ultra-high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 36:2168–2175. doi:10.1002/jssc.201300191
Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2012) On-line solid-phase extraction coupled to ultra-performance liquid chromatography with tandem mass spectrometry detection for the determination of benzotriazole UV stabilizers in coastal marine and wastewater samples. Anal Bioanal Chem 403:867–876. doi:10.1007/s00216-012-5906-x
Acknowledgments
Sarah Montesdeoca-Esponda thanks the University of Las Palmas de Gran Canaria for her position as support staff for research.
Conflicts of interest
The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Montesdeoca-Esponda, S., Sosa-Ferrera, Z., Kabir, A. et al. Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples. Anal Bioanal Chem 407, 8137–8150 (2015). https://doi.org/10.1007/s00216-015-8990-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-015-8990-x