Skip to main content
Log in

A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R 2 ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R 2 = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kerdivel G, Habauzit D, Pakdel F (2013) Assessment and molecular actions of endocrine-disrupting chemicals that interfere with estrogen receptor pathways. Int J Endocr 2013:501851

    Article  Google Scholar 

  2. Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P, Wooden S, Gately D (2012) Development and validation of an antibody-dependent cell-mediated cytotoxic-reporter gene assay. Landes Biosci 4:310–318

    Google Scholar 

  3. Chiba T, Tsuchiya T, Mori R, Shimokawa I (2012) Protein reporter bioassay systems for the phenotypic screening of candidate drugs: a mouse platform for anti-aging drug screening. Sensors 12:1648–1656

    Article  CAS  Google Scholar 

  4. Lo M-C, Wang M, Kim KW, Busby J, Yamane H, Zondlo J, Yuan C, Young SW, Xiao S-H (2008) A highly sensitive high-throughput luminescence assay for malonyl-CoA decarboxylase. Anal Biochem 376:122–130

    Article  CAS  Google Scholar 

  5. Nybond S, Karp M, Tammela P (2013) Antimicrobial assay optimization and validation for HTS in 384-well format using a bioluminescent E. coli K-12 strain. Eur J Pharm Sci 49:782–789

    Article  CAS  Google Scholar 

  6. Uri A, Lust M, Vaasa A, Lagovina D, Viht K, Enkvist E (2010) Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors. Biochim Biophys Acta 1804:541–546

    Article  CAS  Google Scholar 

  7. Wu G, Doberstein K (2006) HTS technologies in biopharmaceutical discovery. Drug Discov Today 11:718–724

    Article  CAS  Google Scholar 

  8. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-RBNA1 cells. Nucleic Acids Res 30:2–9

    Article  Google Scholar 

  9. Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39:141–153

    Article  CAS  Google Scholar 

  10. Belancio VP (2011) Importance of RNA analysis in interpretation of reporter gene expression data. Anal Biochem 417:159–161

    Article  CAS  Google Scholar 

  11. Jiang T, Xing B, Rao J (2008) Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev 25:41–76

    Article  CAS  Google Scholar 

  12. Jeyaseelan K, Ma D, Armugam A (2001) Real-time detection of gene promoter activity: quantification of toxin gene transcription. Nucleic Acids Res 29:11–15

    Article  Google Scholar 

  13. Naylor LH (1999) Reporter genes technology: the future looks bright. Biochem Pharm 58:749–757

    Article  CAS  Google Scholar 

  14. Serganova I, Ponomarev V, Blasberg R (2007) Human reporter genes: potential use in clinical studies. Nuclear Med Biol 34:791–807

    Article  CAS  Google Scholar 

  15. Yang T-T, Parisa S, Kitts PA, Kain SR (1997) Quantification of gene expression with a secreted alkaline phosphatase reporter system. BioTechniques 23:1110–1114

    CAS  Google Scholar 

  16. Zumpe C, Bachmann CL, Metzger AU, Wiedemann N (2010) Comparison of potency assays using different read-out systems and their suitability for quality control. J Immunol Methods 360:129–140

    Article  CAS  Google Scholar 

  17. Zhang G, Kurachi S, Kurachi K (2003) Limitations in use heterologous reporter genes for gene promoter analysis: silencer activity associated with the chloramphenicol acetyltransferase reporter gene. J Biol Chem 278:4825–4830

    Google Scholar 

  18. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791

    Article  CAS  Google Scholar 

  19. Bellisola G, Sorio C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2:1–21

    CAS  Google Scholar 

  20. Arnold SA, Crowley J, Woods N, Harvey LM, McNeil B (2003) In situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19

    Article  CAS  Google Scholar 

  21. Lopes MB, Gonçalves GAL, Felício-Silva D, Prather KLJ, Monteiro GA, Prazeres DMF, Calado CRC (2015) In situ NIR spectroscopy monitoring of plasmid production processes: effect of producing strain, medium composition and the cultivation strategy. J Chem Tech Biotechnol. doi:10.1002/jctb.4431

    Google Scholar 

  22. Sandor M, Rüdinger F, Bienert R, Grimm C, Solle D, Scheper T (2013) Comparative non-invasive monitoring via infrared spectroscopy for mammalian cell cultivations. J Biotechnol 168:636–645

    Article  CAS  Google Scholar 

  23. Schenk J, Viscasillas C, Marison IW, von Stockar U (2008) On-line monitoring of nine different batch cultures of E. coli by mid-infrared spectroscopy, using a single spectra library for calibration. J Biotechnol 134:93–102

    Article  CAS  Google Scholar 

  24. Scholz T, Lopes VV, Calado CRC (2012) High-throughput analysis of the plasmid bioproduction process in Escherichia coli by FTIR spectroscopy. Biotechnol Bioeng 109:2279–2285

    Article  CAS  Google Scholar 

  25. Sellick CA, Hansen R, Jarvis RM, Maqsood AR, Stephens GM, Dickson AJ, Goodacre R (2010) Rapid monitoring of recombinant antibody production by mammalian cell cultures using Fourier Transform infrared spectroscopy and chemometrics. Biotechnol Bioeng 106:432–442

    CAS  Google Scholar 

  26. Amiali NM, Mulvey MR, Sedman J, Simor AE, Ismail AA (2007) Epidemiological typing of methicillin-resistant Staphylococcus aureus strains by Fourier transform infrared spectroscopy. J Microbiol Meth 69:146–153

    Article  CAS  Google Scholar 

  27. Baldauf NA, Rodriguez-Romo LA, Männig A, Yousef AE, Rodriguez-Saona LE (2007) Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-Transform mid-Infrared spectroscopy. J Microbiol Meth 68:106–114

    Article  CAS  Google Scholar 

  28. Davis R, Paoli G, Mauer LJ (2012) Evaluation of Fourier transform infrared (FT-IR) spectroscopy and chemometrics as a rapid approach for sub-typing Escherichia coli O157:H7 isolates. Food Microbiol 31:181–190

    Article  CAS  Google Scholar 

  29. Jamin N, Miller L, Moncuit J, Fridman WH, Dumas P, Teillaud JL (2003) Chemical heterogeneity in cell death: combined synchrotron IR and fluorescence microscopy studies of single apoptotic and necrotic cells. Biopolymers 72:366–373

    Article  CAS  Google Scholar 

  30. Pacifico A, Chiriboga LA, Lasch P, Diem M (2003) Infrared spectroscopy of cultured cells II. Spectra of exponentially growing serum-deprived and confluent cells. Vibr Spectrosc 32:107–115

    Article  CAS  Google Scholar 

  31. Zelig U, Kapelushnik J, Moreh R, Mordechai S, Nathan I (2009) Diagnosis of cell death by means of infrared spectroscopy. Biophys J 97:2107–2114

    Article  CAS  Google Scholar 

  32. Gasparri F, Muzio M (2003) Monitoring of apoptosis of HL60 cells by Fourier-transform infrared spectroscopy. Biochem J 369:239–248

    Article  CAS  Google Scholar 

  33. Hammiche A, German MJ, Hewitt R, Pollock HM, Martin FL (2005) Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. Biophys J 88:3699–3706

    Article  CAS  Google Scholar 

  34. Aksoy C, Severcan F (2012) Role of vibrational spectroscopy in stem cell research. Spectrosc: Int J 27:167–184

    Article  CAS  Google Scholar 

  35. Ami D, Neri T, Natalello A, Mereghetti P, Doglia SM, Zanoni M, Zuccoti M, Garagna S, Redi CA (2008) Embryonic stem cell differentiation studied by FT-IR spectroscopy. Biochim Biophys Acta 1783:98–106

    Article  CAS  Google Scholar 

  36. Downes A, Mouras R, Elfick A (2010) Optical spectroscopy for noninvasive monitoring of stem cell differentiation. J Biomed Biotechnol 2010:101864

    Article  Google Scholar 

  37. Tanthanuch W, Thumanu K, Lorthongpanich C, Parnpai R, Heraud P (2010) Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy. J Mol Struct 967:189–195

    Article  CAS  Google Scholar 

  38. Bogomolny E, Huleihel M, Suproun Y, Sahu RK, Mordechai S (2007) Early spectral changes of cellular malignant transformation using Fourier transform infrared microspectroscopy. J Biomed Opt 12:024003

    Article  Google Scholar 

  39. Huleihel M, Salman A, Erukhimovitch V, Ramesh J, Hammody Z, Mordechai S (2002) Novel spectral method for the study of viral carcinogenesis in vitro. J Biochem Biophys Meth 50:111–121

    Article  CAS  Google Scholar 

  40. Hughes C, Liew M, Sachdeva A, Bassan P, Dumas P, Hart CA, Brown MD, Clarke NW, Gardner P (2010) SR-FTIR spectroscopy of renal epithelial carcinoma side population cells displaying stem cell-like characteristics. Analyst 135:3133–3144

    Article  CAS  Google Scholar 

  41. Gazi E, Dwyer J, Lockyer NP, Miyan J, Gardner P, Hart CA, Brown MD, Clarke NW (2005) A study of cytokinetic and motile prostate cancer cells using synchrotron-based FTIR microspectroscopic imaging. Vibr Spectrosc 38:193–201

    Article  CAS  Google Scholar 

  42. German MJ, Hammiche A, Ragavan N, Tobin MJ, Cooper LJ, Matanhelia SS, Hindley AC, Nicholson CM, Fullwood NJ, Pollock HM, Martin FL (2006) Infrared spectroscopy with multivariate analysis potentially facilitates the segregation of different types of prostate cell. Biophys J 90:3783–3795

    Article  CAS  Google Scholar 

  43. Paluszkiewicz C, Kwiatek WM, Banas A, Kisiel A, Marcelli A, Piccinini M (2001) SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues. Vibr Spectrosc 43:237–242

    Article  Google Scholar 

  44. Tobin MJ, Chesters MA, Chalmers JM, Rutten FJM, Fisher SE, Symonds IM (2004) Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation. Faraday Discuss 126:27–39

    Article  CAS  Google Scholar 

  45. Podshyvalov A, Sahu RK, Mark S, Kantarovich K, Guterman H, Goldstein J (2005) Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks. Appl Opt 44:3725–3734

    Article  CAS  Google Scholar 

  46. Sheng D, Lin X, Wang Y, Wang X (2013) Distinction of leukemic patients’ and healthy persons’ serum using FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 101:228–232

    Article  CAS  Google Scholar 

  47. Bergner N, Romeike BF, Reichart R, Kalff R, Krafft C, Popp J (2013) Tumor margin identification and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines. Analyst 138:3983–3990

    Article  CAS  Google Scholar 

  48. Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Reeve RS, Hart CA, Clarke NW, Brown MD (2006) A correlation of FTIR spectra derived from prostate cancer biopsies with Gleason grade and tumor stage. Eur Urol 50:750–761

    Article  Google Scholar 

  49. Gazi E, Dwyer J, Lockyer NP, Gardner P, Vickerman JC, Miyan J, Hart CA, Brown MD, Shanksc JH, Clarke NW (2004) The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancer. Faraday Discuss 126:41–59

    Article  CAS  Google Scholar 

  50. Paluszkiewicz C, Kwiatek WM (2001) Analysis of human cancer prostate tissues using FTIR microspectroscopy and SRIXE techniques. J Mol Struct 565–566:329–334

    Article  Google Scholar 

  51. Ramesh J, Huleihel M, Mordehai J, Moser A, Erukhimovich V, Levi C, Kapelushnik J, Mordechai S (2003) Preliminary results of evaluation of progress in chemotherapy for childhood leukemia patients employing Fourier-transform infrared microspectroscopy and cluster analysis. J Lab Clin Med 141:385–394

    Article  CAS  Google Scholar 

  52. Khanmohammadi M, Garmarudi AB, Ramin M, Keyvan Ghasemi K (2013) Diagnosis of renal failure by infrared spectrometric analysis of human serum samples and soft independent modeling of class analogy. Microchem J 106:67–72

    Article  CAS  Google Scholar 

  53. Ahmed SSSJ, Santosh W, Kumar S, Christlet THT (2010) Neural network algorithm for the early detection of Parkinsons disease from blood plasma by FTIR micro-spectroscopy. Vibr Spect 53:181–188

    Article  CAS  Google Scholar 

  54. Graça G, Moreira AS, Correia AJV, Goodfellow BJ, Barros AS, Duarte IF, Carreira IM, Galhano E, Pita C, Almeida MC, Gil AM (2013) Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: a possible avenue for early diagnosis of prenatal disorders? Anal Chim Acta 764:24–31

    Article  Google Scholar 

  55. Dukor RK (2006) Vibrational spectroscopy in the detection of cancer. Handbook of Vibrational Spectroscopy. J. Wiley

  56. Walsh MJ, Hammiche A, Fellous TG, Nicholson JM, Cotte M, Susini J, Fullwood NJ, Martin-Hirsch PL, Alison MR, Martin FL (2009) Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microscopy. Stem Cell Res 3:15–27

    Article  CAS  Google Scholar 

  57. Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, Van de Peer Y, Tavernier J, Callewaert N. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. DOI: 10.1038/ncomms5767

  58. Geladi P (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectroch Acta Part B 58:767–782

    Article  Google Scholar 

  59. Fearn T, Riccioli C, Garrido-Varo A, Guerrero-Ginel JE (2009) On the geometry of SNV and MSC. Chemom Intell Lab Syst 96:22–26

    Article  CAS  Google Scholar 

  60. Otto M (1999) Chemometrics: statistics and computer application in analytical chemistry. Wiley, Freiberg

    Google Scholar 

  61. Smith BC (2011) Fourier transform infrared spectroscopy. CRC Press, New York

    Google Scholar 

  62. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202

    Article  CAS  Google Scholar 

  63. Teixeira AP, Oliveira R, Alves PM, Carrondo MJT (2009) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adva 27:726–732

    Article  CAS  Google Scholar 

  64. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Meth 51:255–271

    Article  CAS  Google Scholar 

  65. Kong J, Yu S (2007) Fourier Transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  CAS  Google Scholar 

  66. Naumann D (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev 36:239–298

    Article  CAS  Google Scholar 

  67. Benedetti E, Bramanti E, Papineschi F, Rossi I, Benedetti E (1997) Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectrosc 51:792–797

    Article  CAS  Google Scholar 

  68. Fiszer-Kierzkowska A, Vydra N, Wysocka-Wicisk A, Kronekova Z, Jarzab M, Lisowska KM, Krawczyk Z (2011) Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol Biol 12:27

    Article  CAS  Google Scholar 

  69. Jacobsen L, Calvin SA, Lobenhofer EK (2009) Transcriptional effects of transfection: the potential for misinterpretation of gene expression data generated from transiently transfected cells. Biotechniques 47:617–624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Innovation Agency (Portugal) is acknowledged through the financial support of the CLARO project. Marta B. Lopes gratefully acknowledges the post-doctoral scholarship from FCT (SFRH/BPD/73758/2010). The present work was partly conducted in the BioEngineering Laboratory resulting from the Protocol between Universidade Católica Portuguesa and the Instituto Politécnico de Lisboa.

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília R. C. Calado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, F., Sales, K.C., Cunha, B.R. et al. A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses. Anal Bioanal Chem 407, 8097–8108 (2015). https://doi.org/10.1007/s00216-015-8983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8983-9

Keywords

Navigation