Skip to main content
Log in

Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve “smart” nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A:

Adenine

AgNP:

Gold nanoparticle

AuNP:

Silver nanoparticle

BRET:

Bioluminescence resonance energy transfer

CNT:

Carbon nanotube

Cu-CAA:

Cu+-catalyzed cycloaddition of alkyne and azide groups

dATP:

Deoxyadenosine triphosphate

DMBA:

4-(Dimethylamino)butyric acid

DTT:

Dithiotheritol

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

ELISA:

Enzyme-linked immunosorbent assay

FRET:

Förster resonance energy transfer

GPMS:

γ-Glycidoxypropyltrimethoxysilane

GSH:

Glutathione

HEK 293 cell:

Human embryonic kidney 293 cell

His6:

Hexa-histidine

HRP:

Horseradish peroxidase

Mal:

Maleimide group

MPTMS:

(3-Mercaptopropyl)trimethoxysilane

NHS:

N-Hydroxysuccinimide

NMDAR:

N-Methyl-D-aspartate receptor

NP:

Nanoparticle

PCR:

Polymerase chain reaction

PEG:

Poly(ethylene glycol)

polyA:

Polyadenine

QD:

Quantum dot

Ru(bpy)3 2+ :

Tris(2,2-bipyridyl)ruthenium(II)

SAM:

Self-assembled monolayer

SERS:

Surface-enhanced Raman spectroscopy

SiO2NP:

Silica nanoparticle

STZ:

Sulfathiazole

Sulfo-SMCC:

Sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate

T:

Thymine

TCEP:

Tris(2-carboxyethyl)phosphine

TEOS:

Tetraethylorthosilicate

References

  1. Lee J-S (2014) Silver nanomaterials for the detection of chemical and biological targets. Nanotechnol Rev 3:499–513

    CAS  Google Scholar 

  2. Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold Nanoparticles in Chemical and Biological Sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  3. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  4. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  5. Phillips KS, Cheng Q (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840

    Article  CAS  Google Scholar 

  6. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem Rev 113:1904–2074

    Article  CAS  Google Scholar 

  7. Maxwell DJ, Taylor JR, Nie SM (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    Article  CAS  Google Scholar 

  8. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  9. Park DH, Lee J-S (2015) Functionalized Nanoparticle Probes for Protein Detection. Electron Mater Lett 11:336–345

    Article  CAS  Google Scholar 

  10. Avvakumova S, Colombo M, Tortora P, Prosperi D (2014) Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol 32:11–20

    Article  CAS  Google Scholar 

  11. Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33:259–268

    Article  CAS  Google Scholar 

  12. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  Google Scholar 

  13. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  CAS  Google Scholar 

  14. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  15. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  16. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of 'nanocrystal molecules' using DNA. Nature 382:609–611

    Article  CAS  Google Scholar 

  17. Burns JA, Butler JC, Moran J, Whitesides GM (1991) Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem 56:2648–2650

    Article  CAS  Google Scholar 

  18. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple Thiol-anchor Capped DNA-Gold Nanoparticle Conjugates. Nucleic Acids Res 30:1558–1562

    Article  CAS  Google Scholar 

  19. Han G, Martin CT, Rotello VM (2006) Stability of Gold Nanoparticle-Bound DNA toward Biological, Physical, and Chemical Agents. Chem Biol Drug Des 67:78–82

    Article  CAS  Google Scholar 

  20. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA Loading on a Range of Gold Nanopartricle Sizes. Anal Chem 78:8313–8318

    Article  CAS  Google Scholar 

  21. Stoeva SI, Lee J-S, Smith JE, Rosen ST, Mirkin CA (2006) Multiplexed Detection of Protein Cancer Markers with Bio-Barcoded Nanoparticle Probes. J Am Chem Soc 128:8378–8379

    Article  CAS  Google Scholar 

  22. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  23. Kim BH, Yoon IS, Lee J-S (2013) Masking Nanoparticle Surfaces for Sensitive and Selective Colorimetric Detection of Proteins. Anal Chem 85:10542–10548

    Article  CAS  Google Scholar 

  24. Lytton-Jean AKR, Mirkin CA (2005) A Thermodynamic Investigation into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J Am Chem Soc 127:12754–12755

    Article  CAS  Google Scholar 

  25. Oh JH, Lee J-S (2011) Designed Hybridization Properties of DNA-Gold Nanoparticle Conjugates for the Ultraselective Detection of a Single-Base Mutation in the Breast Cancer Gene BRCA1. Anal Chem 83:7364–7370

    Article  CAS  Google Scholar 

  26. Wang WJ, Chen CL, Qian MX, Zhao XS (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373:213–219

    Article  CAS  Google Scholar 

  27. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin. J Am Chem Soc 126:11768–11769

    Article  CAS  Google Scholar 

  28. Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  29. Chen Z, Huang Y, Li X, Zhou T, Ma H, Qiang H, Liu Y (2013) Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Anal Chim Acta 787:189–192

    Article  CAS  Google Scholar 

  30. Liu J, Lu Y (2006) Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem-Int Edit 45:90–94

    Article  CAS  Google Scholar 

  31. Herr JK, Smith JE, Medley CD, Shangguan DH, Tan WH (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924

    Article  CAS  Google Scholar 

  32. Zhao W, Lin L, Hsing IM (2009) Rapid Synthesis of DNA-Functionalized Gold Nanoparticles in Salt Solution Using Mononucleotide-Mediated Conjugation. Bioconjug Chem 20:1218–1222

    Article  CAS  Google Scholar 

  33. Zu Y, Gao Z (2009) Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles. Anal Chem 81:8523–8528

    Article  CAS  Google Scholar 

  34. Zhang X, Servos MR, Liu J (2012) Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a pH-Assisted and Surfactant-Free Route. J Am Chem Soc 134:7266–7269

    Article  CAS  Google Scholar 

  35. Zhang X, Gouriye T, Göeken K, Servos MR, Gill R, Liu J (2013) Toward Fast and Quantitative Modification of Large Gold Nanoparticles by Thiolated DNA: Scaling of Nanoscale Forces, Kinetics, and the Need for Thiol Reduction. J Phys Chem C 117:15677–15684

    Article  CAS  Google Scholar 

  36. Gill R, Goeken K, Subramaniam V (2013) Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail. Chem Commun 49:11400–11402

    Article  CAS  Google Scholar 

  37. Spain E, Miner B, Keyes TE, Forster RJ (2012) Regio selective functionalisation of gold nanoparticles with DNA. Chem Commun 48:838–840

    Article  CAS  Google Scholar 

  38. Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287

    Article  CAS  Google Scholar 

  39. Huo FW, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306

    Article  CAS  Google Scholar 

  40. Li B, Li CY (2007) Immobilizing Au nanoparticles with polymer single crystals, patterning and asymmetric functionalization. J Am Chem Soc 129:12–13

    Article  CAS  Google Scholar 

  41. Tan LH, Xing H, Chen H, Lu Y (2013) Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. J Am Chem Soc 135:17675–17678

    Article  CAS  Google Scholar 

  42. Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C (2012) Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. J Am Chem Soc 134:11876–11879

    Article  CAS  Google Scholar 

  43. Zhang X, Liu B, Servos MR, Liu J (2013) Polarity Control for Nonthiolated DNA Adsorption onto Gold Nanoparticles. Langmuir 29:6091–6098

    Article  CAS  Google Scholar 

  44. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Sequence-Dependent Stability of DNA-Modified Gold Nanoparticles. Langmuir 18:6666–6670

    Article  CAS  Google Scholar 

  45. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-Dependent Competitive Adsorption of Single-Stranded DNA on Gold. J Am Chem Soc 125:9014–9015

    Article  CAS  Google Scholar 

  46. Page Faulk W, Malcolm Taylor G (1971) Communication to the editors: An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083

    Article  Google Scholar 

  47. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69

    Article  CAS  Google Scholar 

  48. Kumar S, Aaron J, Sokolov K (2008) Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protocols 3:314–320

    Article  CAS  Google Scholar 

  49. Lee IH, Lee JM, Jung Y (2014) Controlled Protein Embedment onto Au/Ag Core–Shell Nanoparticles for Immuno-Labeling of Nanosilver Surface. ACS Appl Mater Interfaces 6:7659–7664

    Article  CAS  Google Scholar 

  50. Fischer MJE (2010) Amine Coupling Through EDC/NHS: A Practical Approach, vol 627. Methods Mol Biol

  51. Choi CHJ, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107:1235–1240

    Article  CAS  Google Scholar 

  52. Park J-H, Park J, Dembereldorj U, Cho K, Lee K, Yang S, Lee S, Joo S-W (2011) Raman detection of localized transferrin-coated gold nanoparticles inside a single cell. Anal Bioanal Chem 401:1631–1639

    Article  CAS  Google Scholar 

  53. Kim Y-H, Jeon J, Hong SH, Rhim W-K, Lee Y-S, Youn H, Chung J-K, Lee MC, Lee DS, Kang KW, Nam J-M (2011) Tumor Targeting and Imaging Using Cyclic RGD-PEGylated Gold Nanoparticle Probes with Directly Conjugated Iodine-125. Small 7:2052–2060

    Article  CAS  Google Scholar 

  54. Oh E, Susumu K, Blanco-Canosa JB, Medintz IL, Dawson PE, Mattoussi H (2010) Preparation of Stable Maleimide-Functionalized Au Nanoparticles and Their Use in Counting Surface Ligands. Small 6:1273–1278

    Article  CAS  Google Scholar 

  55. Kolb HC, Finn MG, Sharpless KB (2001) Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Edit 40:2004–2021

    Article  CAS  Google Scholar 

  56. Lu X, Sun F, Wang J, Zhong J, Dong Q (2009) A Facile Route to Prepare Organic/Inorganic Hybrid Nanomaterials by 'Click Chemistry'. Macromol Rapid Comm 30:2116–2120

    Article  CAS  Google Scholar 

  57. Fu R, Fu G-D (2011) Polymeric nanomaterials from combined click chemistry and controlled radical polymerization. Polym Chem 2:465–475

    Article  CAS  Google Scholar 

  58. Li N, Binder WH (2011) Click-chemistry for nanoparticle-modification. J Mater Chem 21:16717–16734

    Article  CAS  Google Scholar 

  59. Kim Y-P, Daniel WL, Xia Z, Xie H, Mirkin CA, Rao J (2010) Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chem Commun 46:76–78

    Article  CAS  Google Scholar 

  60. Zhang M-X, Huang B-H, Sun X-Y, Pang D-W (2010) Clickable Gold Nanoparticles as the Building Block of Nanobioprobes. Langmuir 26:10171–10176

    Article  CAS  Google Scholar 

  61. Toshiyuki K, Yuta W, Yoko YT, Takuya K, Takashi M, Hiroyuki S, Hitoshi S, Takayuki T (2011) Simple Method of Synthesizing Nickel–Nitrilotriacetic Acid Gold Nanoparticles with a Narrow Size Distribution for Protein Labeling. Jpn J Appl Phys 50:095002

    Article  Google Scholar 

  62. Kogot JM, Parker AM, Lee J, Blaber M, Strouse GF, Logan TM (2009) Analysis of the Dynamics of Assembly and Structural Impact for a Histidine Tagged FGF1−1.5 nm Au Nanoparticle Bioconjugate. Bioconjug Chem 20:2106–2113

    Article  CAS  Google Scholar 

  63. Maus L, Dick O, Bading H, Spatz JP, Fiammengo R (2010) Conjugation of Peptides to the Passivation Shell of Gold Nanoparticles for Targeting of Cell-Surface Receptors. ACS Nano 4:6617–6628

    Article  CAS  Google Scholar 

  64. Tellechea E, Wilson KJ, Bravo E, Hamad-Schifferli K (2012) Engineering the Interface between Glucose Oxidase and Nanoparticles. Langmuir 28:5190–5200

    Article  CAS  Google Scholar 

  65. Kim J-Y, Lee J-S (2010) Synthesis and Thermodynamically Controlled Anisotropic Assembly of DNA−Silver Nanoprism Conjugates for Diagnostic Applications. Chem Mat 22:6684–6691

    Article  CAS  Google Scholar 

  66. Han SH, Lee J-S (2011) Synthesis of Length-Controlled Polyvalent Silver Nanowire–DNA Conjugates for Sensitive and Selective Detection of DNA Targets. Langmuir 28:828–832

    Article  CAS  Google Scholar 

  67. Kim G-A, Han SH, Lee J-S (2012) Controlled structural evolution of large silver nanoparticles and their DNA-Mediated bimetallic reversible assemblies. Mater Lett 68:118–121

    Article  CAS  Google Scholar 

  68. Park H-G, Joo JH, Kim H-G, Lee J-S (2011) Shape-Dependent Reversible Assembly Properties of Polyvalent DNA–Silver Nanocube Conjugates. J Phys Chem C 116:2278–2284

    Article  CAS  Google Scholar 

  69. Zhang Z, Wen Y, Ma Y, Luo J, Jiang L, Song Y (2011) Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. Chem Commun 47:7407–7409

    Article  CAS  Google Scholar 

  70. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver Nanoparticle−Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties. Nano Lett 7:2112–2115

    Article  CAS  Google Scholar 

  71. Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem Commun:6059–6061

  72. Liu M, Wang Z, Zong S, Zhang R, Zhu D, Xu S, Wang C, Cui Y (2013) SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles. Anal Bioanal Chem 405:6131–6136

    Article  CAS  Google Scholar 

  73. Liu Y, Huang CZ (2012) One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst 137:3434–3436

    Article  CAS  Google Scholar 

  74. Zheng Y, Li Y, Deng Z (2012) Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162

    Article  CAS  Google Scholar 

  75. Zhang X, Servos MR, Liu J (2012) Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. Chem Commun 48:10114–10116

    Article  CAS  Google Scholar 

  76. Skewis LR, Reinhard BM (2010) Control of Colloid Surface Chemistry through Matrix Confinement: Facile Preparation of Stable Antibody Functionalized Silver Nanoparticles. ACS Appl Mater Interfaces 2:35–40

    Article  CAS  Google Scholar 

  77. Graf P, Mantion A, Foelske A, Shkilnyy A, Mašić A, Thünemann AF, Taubert A (2009) Peptide-Coated Silver Nanoparticles: Synthesis, Surface Chemistry, and pH-Triggered, Reversible Assembly into Particle Assemblies. Chemistry – A. Eur J 15:5831–5844

    Article  CAS  Google Scholar 

  78. Lai G, Wu J, Ju H, Yan F (2011) Streptavidin-Functionalized Silver-Nanoparticle-Enriched Carbon Nanotube Tag for Ultrasensitive Multiplexed Detection of Tumor Markers. Adv Funct Mater 21:2938–2943

    Article  CAS  Google Scholar 

  79. Song W, Li H, Liu H, Wu Z, Qiang W, Xu D (2013) Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E. Electrochem Commun 31:16–19

    Article  CAS  Google Scholar 

  80. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    Article  CAS  Google Scholar 

  81. Alivisatos AP, Gu W, Larabell C (2005) Quantum Dots as Cellular Probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  82. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  83. He X, Ma N (2014) An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B: Biointerfaces 124:118–131

    Article  CAS  Google Scholar 

  84. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    Article  CAS  Google Scholar 

  85. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286

    Article  CAS  Google Scholar 

  86. Petryayeva E, Algar WR, Medintz IL (2013) Quantum Dots in Bioanalysis: A Review of Applications Across Various Platforms for Fluorescence Spectroscopy and Imaging. Appl Spectrosc 67:215–252

    Article  CAS  Google Scholar 

  87. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: Biofunctionalized Quantum Dots in Biology and Medicine. J Nanomater 2009:815734

    Google Scholar 

  88. Weng JF, Ren JC (2006) Luminescent quantum dots: A very attractive and promising tool in biomedicine. Curr Med Chem 13:897–909

    Article  CAS  Google Scholar 

  89. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  90. Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055

    Article  Google Scholar 

  91. Liu D, Snee PT (2011) Water-Soluble Semiconductor Nanocrystals Cap Exchanged with Metalated Ligands. ACS Nano 5:546–550

    Article  CAS  Google Scholar 

  92. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  93. Zheng Y, Gao S, Ying JY (2007) Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots. Adv Mater 19:376–380

    Article  CAS  Google Scholar 

  94. Zheng Y, Yang Z, Ying JY (2007) Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1–xCdxSe Alloyed Quantum Dots. Adv Mater 19:1475–1479

    Article  CAS  Google Scholar 

  95. Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana SC, Hoffmann B, Ermilov EA, Nyokong T, Höpfner M (2014) Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 466:382–389

    Article  CAS  Google Scholar 

  96. Ryvolova M, Chomoucka J, Janu L, Drbohlavova J, Adam V, Hubalek J, Kizek R (2011) Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe-based quantum dots. Electrophoresis 32:1619–1622

    CAS  Google Scholar 

  97. Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878

    Article  CAS  Google Scholar 

  98. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  99. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV (2010) Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol 5:42–47

    Article  CAS  Google Scholar 

  100. Liu WH, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M (2007) Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 129:14530-+

    Article  CAS  Google Scholar 

  101. Breus VV, Heyes CD, Tron K, Nienhaus GU (2009) Zwitterionic Biocompatible Quantum Dots for Wide pH Stability and Weak Nonspecific Binding to Cells. ACS Nano 3:2573–2580

    Article  CAS  Google Scholar 

  102. Schlenoff JB (2014) Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 30:9625–9636

    Article  CAS  Google Scholar 

  103. Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration As an Alternative to PEGylation. Langmuir 27:6794–6800

    Article  CAS  Google Scholar 

  104. Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B (2010) Small and Stable Sulfobetaine Zwitterionic Quantum Dots for Functional Live-Cell Imaging. J Am Chem Soc 132:4556-+

    Article  CAS  Google Scholar 

  105. Susumu K, Oh E, Delehanty JB, Blanco-Canosa JB, Johnson BJ, Jain V, Hervey WJ, Algar WR, Boeneman K, Dawson PE, Medintz IL (2011) Multifunctional Compact Zwitterionic Ligands for Preparing Robust Biocompatible Semiconductor Quantum Dots and Gold Nanoparticles. J Am Chem Soc 133:9480–9496

    Article  CAS  Google Scholar 

  106. Zhan NQ, Palui G, Safi M, Ji X, Mattoussi H (2013) Multidentate Zwitterionic Ligands Provide Compact and Highly Biocompatible Quantum Dots. J Am Chem Soc 135:13786–13795

    Article  CAS  Google Scholar 

  107. Giovanelli E, Muro E, Sitbon G, Hanafi M, Pons T, Dubertret B, Lequeux N (2012) Highly Enhanced Affinity of Multidentate versus Bidentate Zwitterionic Ligands for Long-Term Quantum Dot Bioimaging. Langmuir 28:15177–15184

    Article  CAS  Google Scholar 

  108. Shrake R, Demillo VG, Ahmadiantehrani M, Zhu XS, Publicover NG, Hunter KW (2015) Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation. J Colloid Interface Sci 437:140–146

    Article  CAS  Google Scholar 

  109. Samanta A, Deng Z, Liu Y, Yan H (2013) A perspective on functionalizing colloidal quantum dots with DNA. Nano Res 6:853–870

    Article  CAS  Google Scholar 

  110. Blanco-Canosa JB, Wu M, Susumu K, Petryayeva E, Jennings TL, Dawson PE, Algar WR, Medintz IL (2014) Recent progress in the bioconjugation of quantum dots. Coord Chem Rev 263–264:101–137

    Article  CAS  Google Scholar 

  111. Rauf S, Glidle A, Cooper JM (2009) Production of Quantum Dot Barcodes Using Biological Self-Assembly. Adv Mater 21:4020-+

    Article  CAS  Google Scholar 

  112. Chakraborty A, Jana NR (2015) Design and Synthesis of Triphenylphosphonium Functionalized Nanoparticle Probe for Mitochondria Targeting and Imaging. J Phys Chem C 119:2888–2895

    Article  CAS  Google Scholar 

  113. Anas A, Okuda T, Kawashima N, Nakayama K, Itoh T, Ishikawa M, Biju V (2009) Clathrin-Mediated Endocytosis of Quantum Dot-Peptide Conjugates in Living Cells. ACS Nano 3:2419–2429

    Article  CAS  Google Scholar 

  114. Lowe SB, Dick JAG, Cohen BE, Stevens MM (2012) Multiplex Sensing of Protease and Kinase Enzyme Activity via Orthogonal Coupling of Quantum Dot-Peptide Conjugates. ACS Nano 6:851–857

    Article  CAS  Google Scholar 

  115. Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D, Jain RK, Bawendi MG (2010) InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. J Am Chem Soc 132:470-+

    Article  CAS  Google Scholar 

  116. Liu W, Greytak AB, Lee J, Wong CR, Park J, Marshall LF, Jiang W, Curtin PN, Ting AY, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. J Am Chem Soc 132:472–483

    Article  CAS  Google Scholar 

  117. Han H, Zylstra J, Maye MM (2011) Direct Attachment of Oligonucleotides to Quantum Dot Interfaces. Chem Mater 23:4975–4981

    Article  CAS  Google Scholar 

  118. Kim H, Ng CYW, Algar WR (2014) Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio. Langmuir 30:5676–5685

    Article  CAS  Google Scholar 

  119. Petryayeva E, Algar WR (2014) Multiplexed Homogeneous Assays of Proteolytic Activity Using a Smartphone and Quantum Dots. Anal Chem 86:3195–3202

    Article  CAS  Google Scholar 

  120. Valenti LE, De Pauli CP, Giacomelli CE (2006) The binding of Ni(II) ions to hexahistidine as a model system of the interaction between nickel and His-tagged proteins. J Inorg Biochem 100:192–200

    Article  CAS  Google Scholar 

  121. Evers TH, Appelhof MAM, Meijer EW, Merkx M (2008) His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor. Protein Eng Des Sel 21:529–536

    Article  CAS  Google Scholar 

  122. Hauser CT, Tsien RY (2007) A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc Natl Acad Sci 104:3693–3697

    Article  CAS  Google Scholar 

  123. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) Kinetics of Metal-Affinity Driven Self-Assembly between Proteins or Peptides and CdSe−ZnS Quantum Dots. J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  124. Cui Z-Q, Ren Q, Wei H-P, Chen Z, Deng J-Y, Zhang Z-P, Zhang X-E (2011) Quantum dot-aptamer nanoprobes for recognizing and labeling influenza A virus particles. Nanoscale 3:2454–2457

    Article  CAS  Google Scholar 

  125. Rauf S, Glidle A, Cooper JM (2010) Application of quantum dot barcodes prepared using biological self-assembly to multiplexed immunoassays. Chem Commun 46:2814–2816

    Article  CAS  Google Scholar 

  126. Geissler D, Charbonniere LJ, Ziessel RF, Butlin NG, Loehmannsroeben H-G, Hildebrandt N (2010) Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics. Angew Chem-Int Edit 49:1396–1401

    Article  CAS  Google Scholar 

  127. Freeman R, Finder T, Willner I (2009) Multiplexed Analysis of Hg2+ and Ag+ Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angew Chem Int Edit 48:7818–7821

    Article  CAS  Google Scholar 

  128. Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G (2012) Quantum Dot-Fluorescent Protein FRET Probes for Sensing Intracellular pH. ACS Nano 6:2917–2924

    Article  CAS  Google Scholar 

  129. Cai W, Chen X (2008) Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc 3:89–96

    Article  CAS  Google Scholar 

  130. Boeneman K, Deschamps JR, Buckhout-White S, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Stewart MH, Susumu K, Goldman ER, Ancona M, Medintz IL (2010) Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture. ACS Nano 4:7253–7266

    Article  CAS  Google Scholar 

  131. With respect to QDs, the number of publications using streptavidin/biotin coupling is approximately 10 times as large as those using dithiol or hexahistidine anchoring groups, and approximately 25 times as large as the total number of publications using HaloTag, SpyCatcher-SpyTag coupling, and inteins. The publications since 2009 were searched in Webofscience as of July 2015

  132. Gemmill KB, Deschamps JR, Delehanty JB, Susumu K, Stewart MH, Glaven RH, Anderson GP, Goldman ER, Huston AL, Medintz IL (2013) Optimizing Protein Coordination to Quantum Dots with Designer Peptidyl Linkers. Bioconjugate Chem 24:269–281

    Article  CAS  Google Scholar 

  133. Kwon H, Hong S, Kim H, Choi Y, Kim J, Song R (2010) Controlled stoichiometric synthesis of DNA-quantum dot conjugates using Ni-mediated coordination chemistry. Chem Commun 46:8959–8961

    Article  CAS  Google Scholar 

  134. Aimé A, Beztsinna N, Patwa A, Pokolenko A, Bestel I, Barthélémy P (2013) Quantum Dot Lipid Oligonucleotide Bioconjugates: Toward a New Anti-MicroRNA Nanoplatform. Bioconjug Chem 24:1345–1355

    Article  CAS  Google Scholar 

  135. Uddayasankar U, Zhang Z, Shergill RT, Gradinaru CC, Krull UJ (2014) Isolation of Monovalent Quantum Dot–Nucleic Acid Conjugates Using Magnetic Beads. Bioconjug Chem 25:1342–1350

    Article  CAS  Google Scholar 

  136. England CG, Luo H, Cai W (2015) HaloTag Technology: A Versatile Platform for Biomedical Applications. Bioconjugate Chem

  137. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem Biol 3:373–382

    Article  CAS  Google Scholar 

  138. Zhang Y, M-k S, Loening AM, Yao H, Gambhir SS, Rao J (2006) HaloTag Protein-Mediated Site-Specific Conjugation of Bioluminescent Proteins to Quantum Dots. Angew Chem Int Ed 45:4936–4940

    Article  CAS  Google Scholar 

  139. So M-K, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotech 24:339–343

    Article  CAS  Google Scholar 

  140. M-k S, Yao H, Rao J (2008) HaloTag protein-mediated specific labeling of living cells with quantum dots. Biochem Biophys Res Commun 374:419–423

    Article  CAS  Google Scholar 

  141. Liu DS, Phipps WS, Loh KH, Howarth M, Ting AY (2012) Quantum Dot Targeting with Lipoic Acid Ligase and HaloTag for Single-Molecule Imaging on Living Cells. ACS Nano 6:11080–11087

    CAS  Google Scholar 

  142. Shah NH, Muir TW (2014) Inteins: nature's gift to protein chemists. Chem Sci 5:446–461

    Article  CAS  Google Scholar 

  143. Perler FB (2002) InBase: The Intein Database. Nucleic Acids Res 30:383–384

    Article  CAS  Google Scholar 

  144. Xia Z, Xing Y, So M-K, Koh AL, Sinclair R, Rao J (2008) Multiplex Detection of Protease Activity with Quantum Dot Nanosensors Prepared by Intein-Mediated Specific Bioconjugation. Anal Chem 80:8649–8655

    Article  CAS  Google Scholar 

  145. Charalambous A, Antoniades I, Christodoulou N, Skourides PA (2011) Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo. J Nanobiotechnol 9

  146. Charalambous A, Andreou M, Skourides PA (2009) Intein-mediated site-specific conjugation of Quantum Dots to proteins in vivo. J Nanobiotechnol 7:9

    Article  CAS  Google Scholar 

  147. Zakeri B, Howarth M (2010) Spontaneous Intermolecular Amide Bond Formation between Side Chains for Irreversible Peptide Targeting. J Am Chem Soc 132:4526–4527

    Article  CAS  Google Scholar 

  148. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. P Natl Acad Sci USA 109:E690–E697

    Article  CAS  Google Scholar 

  149. Sun F, Zhang W-B, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. P Natl Acad Sci USA 111:11269–11274

    Article  CAS  Google Scholar 

  150. Chen AY, Deng Z, Billings AN, Seker UOS, Lu MY, Citorik RJ, Zakeri B, Lu TK (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13:515–523

    Article  CAS  Google Scholar 

  151. Teo YN, Kool ET (2012) DNA-Multichromophore Systems. Chem Rev 112:4221–4245

    Article  CAS  Google Scholar 

  152. Genovese D, Bonacchi S, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2013) Prevention of Self-Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angew Chem-Int Edit 52:5965–5968

    Article  CAS  Google Scholar 

  153. Bagwe RP, Hilliard LR, Tan W (2006) Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 22:4357–4362

    Article  CAS  Google Scholar 

  154. Wu Y, Chen C, Liu S (2009) Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing. Anal Chem 81:1600–1607

    Article  CAS  Google Scholar 

  155. Kim N, Kim CT, Cho YJ, Kim CJ (2011) Development of an immobilized-antigen immunofluorescence glass slide system that exploits fluorescent silica nanoparticles. Sensors Actuators B Chem 160:563–570

    Article  CAS  Google Scholar 

  156. Climent E, Bernardos A, Martínez-Máñez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P (2009) Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. J Am Chem Soc 131:14075–14080

    Article  CAS  Google Scholar 

  157. Kim JY, Lee J-S (2010) Synthesis and Thermodynamically Controlled Anisotropic Assembly of DNA-Silver Nanoprism Conjugates for Diagnostic Applications. Chem Mat 22:6684–6691

    Article  CAS  Google Scholar 

  158. Wang YS, Aili D, Selegard R, Tay Y, Baltzer L, Zhang H, Liedberg B (2012) Specific functionalization of CTAB stabilized anisotropic gold nanoparticles with polypeptides for folding-mediated self-assembly. J Mater Chem 22:20368–20373

    Article  CAS  Google Scholar 

  159. Joo JH, Lee J-S (2013) Library Approach for Reliable Synthesis and Properties of DNA-Gold Nanorod Conjugates. Anal Chem 85:6580–6586

    Article  CAS  Google Scholar 

  160. Yang Y, Wang WF, Li XL, Chen W, Fan NN, Zou C, Chen X, Xu XJ, Zhang LJ, Huang SM (2013) Controlled Growth of Ag/Au Bimetallic Nanorods through Kinetics Control. Chem Mat 25:34–41

    Article  CAS  Google Scholar 

  161. Ye XC, Jin LH, Caglayan H, Chen J, Xing GZ, Zheng C, Vicky DN, Kang YJ, Engheta N, Kagan CR, Murray CB (2012) Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 6:2804–2817

    Article  CAS  Google Scholar 

  162. Han SH, Park LS, Lee J-S (2012) Hierarchically Branched Silver Nanostructures (HBAgNSs) as Surface Plasmon Regulating Platforms for Multiplexed Colorimetric DNA Detection. J Mater Chem 22:20223–20231

    Article  CAS  Google Scholar 

  163. Mannelli I, Marco MP (2010) Recent advances in analytical and bioanalysis applications of noble metal nanorods. Anal Bioanal Chem 398:2451–2469

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2012R1A1A2A10042814) and Brain Korea 21 Plus Project in 2015.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, JH., Park, D.H., Joo, J.H. et al. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem 407, 8627–8645 (2015). https://doi.org/10.1007/s00216-015-8981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8981-y

Keywords

Navigation