Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8225–8231 | Cite as

Plasmonic vertical dimer arrays as elements for biosensing

  • Andreas Horrer
  • Katrin Krieg
  • Kathrin Freudenberger
  • Sabrina Rau
  • Lothar Leidner
  • Günter Gauglitz
  • Dieter P. Kern
  • Monika Fleischer
Research Paper
Part of the following topical collections:
  1. Nanospectroscopy

Abstract

Localized surface plasmon resonances of metallic nanoparticles can be used for biosensing because of their sensitive dependence on the refractive index of the surrounding medium. The binding of molecules to the particles causes a change of the effective refractive index in their close vicinity, which leads to a reversible shift of the resonance. We present simulations and sensing experiments of a plasmon resonance based biosensor that makes use of the narrow antisymmetric resonance in coupled plasmonic vertical dimers. The sensitivity of the antisymmetric resonance is compared with that of a surface lattice resonance for refractive index sensing of bulk and of thin layers of molecules. The functionality of such a sensor surface is demonstrated via a testosterone immunoassay for detection of antibody from a solution by binding to surface-immobilized antigen in a fluidic channel.

Keywords

Plasmonic nanostructures Biosensing Label-free immunoassay Vertical dimer Testosterone 

Notes

Acknowledgments

This work was financially supported by the Baden-Württemberg Foundation as part of the project GRIN-SEN in the research program Optical Technologies, and by the Deutscher Akademischer Austauschdienst (DAAD) within the scope of the program PROCOPE. The project was performed in the framework of the European Cooperation in Science and Technology COST Action MP1302 Nanospectroscopy. The authors want to thank the partners in the GRIN-SEN and PROCOPE projects for fruitful discussions.

References

  1. 1.
    Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease. Nano Lett 4:1029–1034CrossRefGoogle Scholar
  2. 2.
    Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123:1599–1603CrossRefGoogle Scholar
  3. 3.
    Chen HH, Suzuki H, Sato O, Gu ZZ (2005) Biosensing capability of gold-nanoparticle-immobilized three-dimensionally ordered macroporous film. Appl Phys A Mater Sci Process 81:1127–1130CrossRefGoogle Scholar
  4. 4.
    Endo T, Yamamura S, Nagatani N, Morita Y, Takamura Y, Tamiya E (2005) Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction. Sci Technol Adv Mater 6:491–500CrossRefGoogle Scholar
  5. 5.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311CrossRefGoogle Scholar
  6. 6.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  7. 7.
    Tittl A, Giessen H, Liu N (2014) Plasmonic gas and chemical sensing. Nanophotonics 3:157–180CrossRefGoogle Scholar
  8. 8.
    Lee J, Hasan W, Odom TW (2009) Tuning the thickness and orientation of single Au pyramids for improved refractive index sensitivities. J Phys Chem C 113:2205–2207CrossRefGoogle Scholar
  9. 9.
    Fujiwara K, Watarai H, Itoh H, Nakahama E, Ogawa N (2006) Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem 386:639–644CrossRefGoogle Scholar
  10. 10.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  11. 11.
    Kim HM, Jin SM, Lee SK, Kim MG, Shin YB (2009) Detection of biomolecular binding through enhancement of localized surface plasmon resonance (LSPR) by gold nanoparticles. Sensors 9:2334–2344CrossRefGoogle Scholar
  12. 12.
    Lee SW, Lee KS, Ahn J, Lee JJ, Kim MG, Shin YB (2011) Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5:897–904CrossRefGoogle Scholar
  13. 13.
    Soares L, Csáki A, Jatschka J, Fritzsche W, Flores O, Franco R, Pereira E (2014) Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature. Analyst 139:4964–4973CrossRefGoogle Scholar
  14. 14.
    Yakovleva J, Davidsson R, Bengtsson M, Laurell T, Emnéus J (2003) Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection. Biosens Bioelectron 19:21–34CrossRefGoogle Scholar
  15. 15.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJ (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565CrossRefGoogle Scholar
  16. 16.
    Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21:255503CrossRefGoogle Scholar
  17. 17.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefGoogle Scholar
  18. 18.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor J, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108:11784–11789CrossRefGoogle Scholar
  19. 19.
    Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101:143902CrossRefGoogle Scholar
  20. 20.
    Humphrey AD, Barnes WL (2014) Plasmonic surface lattice resonances on arrays of different lattice symmetry. Phys Rev B 90:075404CrossRefGoogle Scholar
  21. 21.
    Auguié B, Bendana XM, Barnes WL, de Abajo FJG (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82:155447CrossRefGoogle Scholar
  22. 22.
    Su KH, Wei QH, Zhang X (2006) Tunable and augmented plasmon resonances of Au∕ SiO2∕ Au nanodisks. Appl Phys Lett 88:063118CrossRefGoogle Scholar
  23. 23.
    Dmitriev A, Pakizeh T, Käll M, Sutherland DS (2007) Gold–silica–gold nanosandwiches: tunable bimodal plasmonic resonators. Small 3:294–299CrossRefGoogle Scholar
  24. 24.
    Ekinci Y, Christ A, Agio M, Martin OJF, Solak HH, Löffler JF (2008) Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt Express 16:13287–13295CrossRefGoogle Scholar
  25. 25.
    Pakizeh T, Dmitriev A, Abrishamian MS, Granpayeh N, Käll M (2008) Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. J Opt Soc Am B 25:659–667CrossRefGoogle Scholar
  26. 26.
    Cinel NA, Bütün S, Ertaş G, Özbay E (2013) ‘Fairy Chimney’‐shaped tandem metamaterials as double resonance SERS substrates. Small 9:531–537CrossRefGoogle Scholar
  27. 27.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  28. 28.
    O'Shannessy DJ, Winzor DJ (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology. Anal Biochem 236:275–283CrossRefGoogle Scholar
  29. 29.
    O'Connell MA, Belanger BA, Haaland PD (1993) Calibration and assay development using the four-parameter logistic model. Chemom Intell Lab Syst 20:97–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andreas Horrer
    • 1
  • Katrin Krieg
    • 2
  • Kathrin Freudenberger
    • 2
  • Sabrina Rau
    • 2
  • Lothar Leidner
    • 2
  • Günter Gauglitz
    • 2
  • Dieter P. Kern
    • 1
  • Monika Fleischer
    • 1
  1. 1.Institute for Applied Physics and Center LISA+University of TübingenTübingenGermany
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of TübingenTübingenGermany

Personalised recommendations