Skip to main content
Log in

Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Helium capillary dielectric barrier discharge driven by the square wave-shaped high voltage was investigated spatially and temporally by means of optical emission spectroscopy. The finding of the previous investigation conducted with the sinusoidal-like high voltage was confirmed, i.e., the plasma in the jet and the plasma in the capillary constitute two temporally separated events. The plasma in the jet occurs prior to the discharge in the capillary and exists only during the positive half period of the applied high voltage. The time delay of the capillary discharge with respect to the discharge in the jet depended on the high voltage, and it was between 2.4 and 8.4 μs for the voltage amplitude change in the range from 1.96 to 2.31 kV, respectively. It was found that, compared to sinusoidal-like voltage, application of the square wave high voltage results with stronger (~6 times) He line emission in the jet, which makes the latter more favorable for efficient soft ionization. The use of the square wave high voltage enabled comparison of the currents (~1 mA) flowing in the capillary during the positive and negative high voltage periods, which yielded the estimation for the charge dissipated in the atmosphere ((4 ± 20 %) × 10−11 C) through the plasma jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Na NM, Zhao X, Zhang SC, Yang CD, Zhang XR (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18(10):1859–1862

    Article  CAS  Google Scholar 

  2. Zhu Z, Liu J, Zhang S, Na X, Zhang X (2008) Determination of Se, Pb, and Sb by atomic fluorescence spectrometry using a new flameless, dielectric barrier discharge atomizer. Spectrochim Acta B At Spectrosc 63(3):431–436

    Article  Google Scholar 

  3. Yu Y, Du Z, Chen M, Wang J (2008) Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry. Angew Chem Int Ed 47(41):7909–7912

    Article  CAS  Google Scholar 

  4. Gras R, Luong J, Monagle M, Winniford B (2006) Gas chromatographic applications with the dielectric barrier discharge detector. J Chromatogr Sci 44(2):101–107

    Article  CAS  Google Scholar 

  5. He Y, Lv Y, Li Y, Tang H, Li L, Wu X, Hou X (2007) Dielectric barrier discharge-induced chemiluminescence: potential application as GC detector. Anal Chem 79(12):4674–4680

    Article  CAS  Google Scholar 

  6. Almasian MR, Na N, Wen F, Zhang S, Zhang X (2010) Development of a plasma-assisted cataluminescence system for benzene, toluene, ethylbenzene, and xylenes analysis. Anal Chem 82(9):3457–3459

    Article  CAS  Google Scholar 

  7. Jafari MT (2011) Low-temperature plasma ionization ion mobility spectrometry. Anal Chem 83(3):797–803

    Article  CAS  Google Scholar 

  8. Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X (2015) Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem 407(9):2345–2364

    Article  CAS  Google Scholar 

  9. Hu J, Li W, Zheng C, Hou X (2011) Dielectric barrier discharge in analytical spectrometry. Appl Spectrosc Rev 46(5):368–387

    Article  Google Scholar 

  10. Meyer C, Müller S, Gurevich EL, Franzke J (2011) Dielectric barrier discharges in analytical chemistry. Analyst 136(12):2427–2440

    Article  CAS  Google Scholar 

  11. Bárdos L, Baránková H (2010) Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films 518(23):6705–6713

    Article  Google Scholar 

  12. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61(1):2–30

    Article  Google Scholar 

  13. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  14. Jiang N, Ji A, Cao Z (2009) Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism. J Appl Phys 106(1):013308

    Article  Google Scholar 

  15. Urabe K, Morita T, Tachibana K, Ganguly BN (2010) Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. J Phys D Appl Phys 43(9):095201

    Article  Google Scholar 

  16. Sands BL, Leiweke RJ, Ganguly BN (2010) Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet. J Phys D Appl Phys 43(28):282001

    Article  Google Scholar 

  17. Boeuf J-P, Yang LL, Pitchford LC (2013) Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J Phys D Appl Phys 46(1):015201

    Article  Google Scholar 

  18. Karakas E, Akman MA, Laroussi M (2012) The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci Technol 21(3):034016

    Article  Google Scholar 

  19. Sands BL, Ganguly BN, Tachibana K (2008) A streamer-like atmospheric pressure plasma jet. Appl Phys Lett 92(15):151503

    Article  Google Scholar 

  20. Sands BL, Huang SK, Speltz JW, Niekamp MA, Ganguly BN (2013) Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s5) production in a He-Ar plasma jet. J Appl Phys 113(15):153303

    Article  Google Scholar 

  21. Lu X, Laroussi M (2006) Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys 100(6):063302

    Article  Google Scholar 

  22. Horvatic V, Michels A, Ahlmann N, Jestel G, Veza D, Vadla C, Franzke J (2015) Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage. J Anal Bioanal Chem. doi:10.1007/s00216-015-8827-7

    Google Scholar 

  23. Müller S, Krähling T, Veza D, Horvatic V, Vadla C, Franzke J (2013) Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim Acta B 85:104–111

    Article  Google Scholar 

  24. Meyer C, Müller S, Gilbert-López B, Franzke J (2013) Impact of homogeneous and filamentary discharge modes on the efficiency of dielectric barrier discharge ionization mass spectrometry. Anal Bioanal Chem 405(14):4729–4735

    Article  CAS  Google Scholar 

  25. Horvatic V, Vadla C, Franzke J (2014) Discussion of fundamental processes in dielectric barrier discharges used for soft ionization. Spectrochim Acta B 100:52–61

    Article  CAS  Google Scholar 

  26. Urabe K, Ito Y, Osamu Sakai O, Tachibana K (2010) Interaction between dielectric barrier discharge and positive streamer in helium plasma jet at atmospheric pressure. Jpn J Appl Phys 49(10R):106001

    Article  Google Scholar 

  27. Chan GC-Y, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, Hieftje GM (2011) Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem 83(10):3675–3686

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft (project no. FR 1192/13-1) is gratefully acknowledged. This work has been supported in part by the Croatian Science Foundation under the project no. 2753.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasta Horvatic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvatic, V., Michels, A., Ahlmann, N. et al. Time-resolved spectroscopy of a homogeneous dielectric barrier discharge for soft ionization driven by square wave high voltage. Anal Bioanal Chem 407, 7973–7981 (2015). https://doi.org/10.1007/s00216-015-8969-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8969-7

Keywords

Navigation