Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8177–8195 | Cite as

Tip-enhanced Raman spectroscopy: tip-related issues

  • Teng-Xiang Huang
  • Sheng-Chao Huang
  • Mao-Hua Li
  • Zhi-Cong Zeng
  • Xiang WangEmail author
  • Bin RenEmail author
Part of the following topical collections:
  1. Nanospectroscopy


After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential.

Graphical Abstract


TERS Tip Electrochemical etching Coating Protection 



We acknowledge the support from the Ministry of Science and Technology (MOST, 2011YQ03012406 and 2013CB933703), National Natural Science Foundation of China (NSFC; 21227004, 21321062, and J1310024), and Ministry of Education of the People’s Republic of China (MOE, IRT13036).

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    McCreery RL (2001) Meas Sci Technol 12(5):663CrossRefGoogle Scholar
  2. 2.
    Weber WH, Merlin R (2013) Raman scattering in materials science. Springer Science & Business Media, BerlinGoogle Scholar
  3. 3.
    Lawson EE, Barry BW, Williams AC, Edwards HGM (1997) J Raman Spectrosc 28(2–3):111–117CrossRefGoogle Scholar
  4. 4.
    Barron LD, Buckingham AD (1971) Mol Phys 20(6):1111–1119CrossRefGoogle Scholar
  5. 5.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26(2):163–166CrossRefGoogle Scholar
  6. 6.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84(77):1–20CrossRefGoogle Scholar
  7. 7.
    Nie S, Emory SR (1997) Science 275(5303):1102–1106CrossRefGoogle Scholar
  8. 8.
    Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121(43):9932–9939CrossRefGoogle Scholar
  9. 9.
    Le Ru EC, Meyer M, Etchegoin PG (2006) J Phys Chem B 110(4):1944–1948CrossRefGoogle Scholar
  10. 10.
    Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129(51):16249–16256CrossRefGoogle Scholar
  11. 11.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318(1–3):131–136CrossRefGoogle Scholar
  12. 12.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183(1–4):333–336CrossRefGoogle Scholar
  13. 13.
    Anderson MS (2000) Appl Phys Lett 76(21):3130–3132CrossRefGoogle Scholar
  14. 14.
    Pettinger B, Picardi G, Schuster R, Ertl G (2000) Electrochem Jpn 68:942–949Google Scholar
  15. 15.
    Zhang Z, Chen L, Sun M, Ruan P, Zheng H, Xu H (2013) Nanoscale 5(8):3249–3252CrossRefGoogle Scholar
  16. 16.
    Lantman EMV, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Nat Nanotechnol 7(9):583–586CrossRefGoogle Scholar
  17. 17.
    Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale 7(16):7133–7137CrossRefGoogle Scholar
  18. 18.
    Stadler J, Schmid T, Zenobi R (2011) ACS Nano 5(10):8442–8448CrossRefGoogle Scholar
  19. 19.
    Domke KF, Pettinger B (2009) J Raman Spectrosc 40(10):1427–1433CrossRefGoogle Scholar
  20. 20.
    Marquestaut N, Talaga D, Servant L, Yang P, Pauzauskie P, Lagugne-Labarthet F (2009) J Raman Spectrosc 40(10):1441–1445CrossRefGoogle Scholar
  21. 21.
    Ogawa Y, Toizumi T, Minami F, Baranov AV (2011) Phys Rev B 83(8):081302CrossRefGoogle Scholar
  22. 22.
    Lee N, Hartschuh RD, Mehtani D, Kisliuk A, Maguire JF, Green M, Foster MD, Sokolov AP (2007) J Raman Spectrosc 38(6):789–796CrossRefGoogle Scholar
  23. 23.
    Gucciardi PG, Valmalette JC (2010) Appl Phys Lett 97(26):263104CrossRefGoogle Scholar
  24. 24.
    Zhu L, Atesang J, Dudek P, Hecker M (2007) Mater Sci-Pol 25(1):19–31Google Scholar
  25. 25.
    Yeo BS, Amstad E, Schmid T, Stadler J, Zenobi R (2009) Small 5(8):952–960CrossRefGoogle Scholar
  26. 26.
    Xue L, Li W, Hoffmann GG, Goossens JGP, Loos J, de With G (2011) Macromolecules 44(8):2852–2858CrossRefGoogle Scholar
  27. 27.
    Domke KF, Zhang D, Pettinger B (2007) J Am Chem Soc 129(21):6708–6709CrossRefGoogle Scholar
  28. 28.
    Bailo E, Deckert V (2008) Angew Chem Int Ed 47(9):1658–1661CrossRefGoogle Scholar
  29. 29.
    Snopok B, Snitka V, Naumenko D, Bruzaite I, Serviene E (2013) Analyst 138(18):5371–5383CrossRefGoogle Scholar
  30. 30.
    Liu Z, Ding SY, Chen ZB, Wang X, Tian JH, Anema JR, Zhou XS, Wu DY, Ma BW, Xu X, Ren B, Tian ZQ (2011) Nat Commun 2:305CrossRefGoogle Scholar
  31. 31.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92(9):096101CrossRefGoogle Scholar
  32. 32.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36(6–7):541–550CrossRefGoogle Scholar
  33. 33.
    Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2005) Angew Chem Int Ed 44(1):139–142CrossRefGoogle Scholar
  34. 34.
    Domke KF, Pettinger B (2009) ChemPhysChem 10(11):1794–1798CrossRefGoogle Scholar
  35. 35.
    Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ (2009) J Raman Spectrosc 40(10):1400–1406CrossRefGoogle Scholar
  36. 36.
    Horimoto NN, Tomizawa S, Fujita Y, Kajimoto S, Fukumura H (2014) Chem Commun 50(69):9862–9864CrossRefGoogle Scholar
  37. 37.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Nature 498(7452):82–86CrossRefGoogle Scholar
  38. 38.
    Steidtner J, Pettinger B (2008) Phys Rev Lett 100(23):236101CrossRefGoogle Scholar
  39. 39.
    Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) J Phys Chem C 111(4):1733–1738CrossRefGoogle Scholar
  40. 40.
    Krug JT, Sanchez EJ, Xie XS (2002) J Chem Phys 116(24):10895–10901CrossRefGoogle Scholar
  41. 41.
    Pettinger B, Schambach P, Villagómez CJ, Scott N (2012) Annu Rev Phys Chem 63(1):379–399CrossRefGoogle Scholar
  42. 42.
    Sun WX, Shen ZX (2003) J Opt Soc Am A 20(12):2254–2259CrossRefGoogle Scholar
  43. 43.
    Notingher I, Elfick A (2005) J Phys Chem B 109(33):15699–15706CrossRefGoogle Scholar
  44. 44.
    Demming AL, Festy F, Huang F, Richards D (2005) J Korean Phys Soc 47:S1–S4Google Scholar
  45. 45.
    Neacsu CC, Steudle GA, Raschko MB (2005) Appl Phys B Lasers Opt 80(3):295–300CrossRefGoogle Scholar
  46. 46.
    Picardi G, Nguyen Q, Ossikovski R, Schreiber J (2007) Appl Spectrosc 61(12):1301–1305CrossRefGoogle Scholar
  47. 47.
    Hayazawa N, Saito Y, Kawata S (2004) Appl Phys Lett 85(25):6239–6241CrossRefGoogle Scholar
  48. 48.
    Kazemi-Zanjani N, Vedraine S, Lagugné-Labarthet F (2013) Opt Express 21(21):25271–25276CrossRefGoogle Scholar
  49. 49.
    Yang ZL, Aizpurua J, Xu HX (2009) J Raman Spectrosc 40(10):1343–1348CrossRefGoogle Scholar
  50. 50.
    Roth RM, Panoiu NC, Adams MM, Osgood RM, Neacsu CC, Raschke MB (2006) Opt Express 14(7):2921–2931CrossRefGoogle Scholar
  51. 51.
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90(9):095503CrossRefGoogle Scholar
  52. 52.
    Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76(11):113409CrossRefGoogle Scholar
  53. 53.
    Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Surf Sci 603(10–12):1335–1341CrossRefGoogle Scholar
  54. 54.
    Yano TA, Ichimura T, Taguchi A, Hayazawa N, Verma P, Inouye Y, Kawata S (2007) Appl Phys Lett 91(12):121101CrossRefGoogle Scholar
  55. 55.
    Sun MT, Zhang ZL, Chen L, Xu HX (2013) Adv Opt Mater 1(6):449–455CrossRefGoogle Scholar
  56. 56.
    Stadler J, Oswald B, Schmid T, Zenobi R (2013) J Raman Spectrosc 44(2):227–233CrossRefGoogle Scholar
  57. 57.
    Uetsuki K, Verma P, Nordlander P, Kawata S (2012) Nanoscale 4(19):5931–5935CrossRefGoogle Scholar
  58. 58.
    Sun MT, Fang YR, Yang ZL, Xu HX (2009) Phys Chem Chem Phys 11(41):9412–9419CrossRefGoogle Scholar
  59. 59.
    Downes A, Salter D, Elfick A (2006) J Phys Chem B 110(13):6692–6698CrossRefGoogle Scholar
  60. 60.
    Zhang WH, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7(5):1401–1405CrossRefGoogle Scholar
  61. 61.
    Downes A, Salter D, Elfick A (2006) Opt Express 14(12):5216–5222CrossRefGoogle Scholar
  62. 62.
    Poborchii V, Tada T, Kanayama T, Geshev P (2009) J Raman Spectrosc 40(10):1377–1385CrossRefGoogle Scholar
  63. 63.
    Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S (2009) Opt Express 17(8):6509–6518CrossRefGoogle Scholar
  64. 64.
    Palik ED (1998) Handbook of optical constants of solids III. Academic, San DiegoGoogle Scholar
  65. 65.
    Cui XD, Zhang WH, Yeo BS, Zenobi R, Hafner C, Erni D (2007) Opt Express 15(13):8309–8316CrossRefGoogle Scholar
  66. 66.
    Yeo BS, Zhang WH, Vannier C, Zenobi R (2006) Appl Spectrosc 60(10):1142–1147CrossRefGoogle Scholar
  67. 67.
    Yeo BS, Schmid T, Zhang WH, Zenobi R (2007) Anal Bioanal Chem 387(8):2655–2662CrossRefGoogle Scholar
  68. 68.
    Demming AL, Festy F, Richards D (2005) J Chem Phys 122(18)Google Scholar
  69. 69.
    Meng LY, Huang TX, Wang X, Chen S, Yang ZL, Ren B (2015) Opt Express 23(11):13804–13813CrossRefGoogle Scholar
  70. 70.
    Downes A, Salter D, Elfick A (2006) Opt Express 14(23):11324–11329CrossRefGoogle Scholar
  71. 71.
    Zhang WH, Cui XD, Martin OJF (2009) J Raman Spectrosc 40(10):1338–1342CrossRefGoogle Scholar
  72. 72.
    Angulo AM, Noguez C, Schatz GC (2011) J Phys Chem Lett 2(16):1978–1983CrossRefGoogle Scholar
  73. 73.
    Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  74. 74.
    Lin HX, Li JM, Liu BJ, Liu DY, Liu J, Terfort A, Xie ZX, Tian ZQ, Ren B (2013) Phys Chem Chem Phys 15(12):4130–4135CrossRefGoogle Scholar
  75. 75.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Phys Chem 1(1):601–626CrossRefGoogle Scholar
  76. 76.
    Schlücker S (2014) Angew Chem Int Ed 53(19):4756–4795CrossRefGoogle Scholar
  77. 77.
    Wang HT, Tian T, Zhang Y, Pan ZQ, Wang Y, Xiao ZD (2008) Langmuir 24(16):8918–8922CrossRefGoogle Scholar
  78. 78.
    Deckert V, Deckert-Gaudig T, Diegel M, Gotz I, Langeluddecke L, Schneidewind H, Sharma G, Singh P, Singh P, Trautmann S, Zeisberger M, Zhang Z (2015) Faraday Discuss 177:9–20CrossRefGoogle Scholar
  79. 79.
    Wang X, Liu Z, Zhuang MD, Zhang HM, Wang X, Xie ZX, Wu DY, Ren B, Tian ZQ (2007) Appl Phys Lett 91(10):101105CrossRefGoogle Scholar
  80. 80.
    Mino T, Saito Y, Verma P (2014) ACS Nano 8(10):10187–10195CrossRefGoogle Scholar
  81. 81.
    Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79(4):645–648CrossRefGoogle Scholar
  82. 82.
    Novotny L, Stranick SJ (2006) Annu Rev Phys Chem 57(1):303–331CrossRefGoogle Scholar
  83. 83.
    Mishra N, Kumar GVP (2012) Plasmonics 7(2):359–367CrossRefGoogle Scholar
  84. 84.
    Blum C, Opilik L, Atkin JM, Braun K, Kämmer SB, Kravtsov V, Kumar N, Lemeshko S, Li JF, Luszcz K, Maleki T, Meixner AJ, Minne S, Raschke MB, Ren B, Rogalski J, Roy D, Stephanidis B, Wang X, Zhang D, Zhong JH, Zenobi R (2014) J Raman Spectrosc 45(1):22–31CrossRefGoogle Scholar
  85. 85.
    Bryant PJ, Kim HS, Zheng YC, Yang R (1987) Rev Sci Instrum 58(6):1115CrossRefGoogle Scholar
  86. 86.
    Melmed AJ (1991) J Vac Sci Technol B 9(2):601–608CrossRefGoogle Scholar
  87. 87.
    Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75(4):837–841CrossRefGoogle Scholar
  88. 88.
    Billot L, Berguiga L, de la Chapelle ML, Gilbert Y, Bachelot R (2005) Eur Phys J Appl Phys 31(2):139–145CrossRefGoogle Scholar
  89. 89.
    Wang X, Cui Y, Ren B (2007) Chem J Chinese Univ 28(3):522–525Google Scholar
  90. 90.
    Li ZL, Wu TH, Niu ZJ, Huang W, Nie HD (2004) Electrochem Commun 6(1):44–48CrossRefGoogle Scholar
  91. 91.
    Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Rev Sci Instrum 80(3):033701CrossRefGoogle Scholar
  92. 92.
    Kharintsev SS, Noskov AI, Hoffmann GG, Loos J (2011) Nanotechnology 22(2):025202CrossRefGoogle Scholar
  93. 93.
    Snitka V, Rodrigues RD, Lendraitis V (2011) Microelectron Eng 88(8):2759–2762CrossRefGoogle Scholar
  94. 94.
    Boyle MG, Feng L, Dawson P (2008) Ultramicroscopy 108(6):558–566CrossRefGoogle Scholar
  95. 95.
    Gingery D, Buehlmann P (2007) Rev Sci Instrum 78(11):113703CrossRefGoogle Scholar
  96. 96.
    Lopes M, Toury T, de La Chapelle ML, Bonaccorso F, Gucciardi PG (2013) Rev Sci Instrum 84(7):073702CrossRefGoogle Scholar
  97. 97.
    Park J, Hong T, Lee N, Kim K, Seo Y (2011) Curr Appl Phys 11(6):1332–1336CrossRefGoogle Scholar
  98. 98.
    Kharintsev S, Hoffmann G, Fishman A, Salakhov MK (2013) J Phys D Appl Phys 46(14):145501CrossRefGoogle Scholar
  99. 99.
    Roy D, Williams CM, Mingard K (2010) J Vac Sci Technol B 28(3):631–634CrossRefGoogle Scholar
  100. 100.
    Gorbunov AA, Wolf B, Edelmann J (1993) Rev Sci Instrum 64(8):2393CrossRefGoogle Scholar
  101. 101.
    Dickmann K, Demming F, Jersch J (1996) Rev Sci Instrum 67(3):845–846CrossRefGoogle Scholar
  102. 102.
    Iwami M, Uehara Y, Ushioda S (1998) Rev Sci Instrum 69(11):4010–4011CrossRefGoogle Scholar
  103. 103.
    Lloyd JS, Williams A, Rickman RH, McCowen A, Dunstan PR (2011) Appl Phys Lett 99(14):143108CrossRefGoogle Scholar
  104. 104.
    Hodgson PA, Wang Y, Mohammad AA, Kruse P (2013) Rev Sci Instrum 84(2):026109CrossRefGoogle Scholar
  105. 105.
    Ibe JP, Bey PP Jr, Brandow SL, Brizzolara RA, Burnham NA, Dilella DP, Lee KP, Marrian CRK, Colton RJ (1990) J Vac Sci Technol A 8(4):3570–3575CrossRefGoogle Scholar
  106. 106.
    Stadler J, Schmid T, Zenobi R (2010) Nano Lett 10(11):4514–4520CrossRefGoogle Scholar
  107. 107.
    Zhang C, Gao B, Chen LG, Meng QS, Yang H, Zhang R, Tao X, Gao HY, Liao Y, Dong ZC (2011) Rev Sci Instrum 82(8):083101CrossRefGoogle Scholar
  108. 108.
    Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Nano Lett 12(10):5061–5067CrossRefGoogle Scholar
  109. 109.
    Sasaki SS, Perdue SM, Perez AR, Tallarida N, Majors JH, Apkarian VA, Lee J (2013) Rev Sci Instrum 84(9):096109CrossRefGoogle Scholar
  110. 110.
    Yi KJ, He XN, Zhou YS, Xiong W, Lu YF (2008) Rev Sci Instrum 79(7):073706CrossRefGoogle Scholar
  111. 111.
    You YM, Purnawirman NA, Hu HL, Kasim J, Yang HP, Du CL, Yu T, Shen ZX (2010) J Raman Spectrosc 41(10):1156–1162CrossRefGoogle Scholar
  112. 112.
    Fujita Y, Chiba R, Lu G, Horimoto NN, Kajimoto S, Fukumura H, Uji-i H (2014) Chem Commun 50(69):9839–9841CrossRefGoogle Scholar
  113. 113.
    Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) J Phys Chem Lett 1(24):3427–3432CrossRefGoogle Scholar
  114. 114.
    Schlegel VL, Cotton TM (1991) Anal Chem 63(3):241–247CrossRefGoogle Scholar
  115. 115.
    Golan Y, Margulis L, Rubinstein I (1992) Surf Sci 264(3):312–326CrossRefGoogle Scholar
  116. 116.
    Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) J Phys Chem B 109(16):7969–7975CrossRefGoogle Scholar
  117. 117.
    Lüssem B, Karthäuser S, Haselier H, Waser R (2005) Appl Surf Sci 249(1–4):197–202CrossRefGoogle Scholar
  118. 118.
    DeRose JA, Thundat T, Nagahara LA, Lindsay SM (1991) Surf Sci 256(1–2):102–108CrossRefGoogle Scholar
  119. 119.
    Asghari-Khiavi M, Wood BR, Hojati-Talemi P, Downes A, McNaughton D, Mechler A (2012) J Raman Spectrosc 43(2):173–180CrossRefGoogle Scholar
  120. 120.
    Peng L, Lee H, Teizer W, Liang H (2009) Wear 267(5–8):1177–1180CrossRefGoogle Scholar
  121. 121.
    Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD (2009) J Phys Chem C 113(19):8158–8161CrossRefGoogle Scholar
  122. 122.
    Schmid T, Yeo BS, Leong G, Stadler J, Zenobi R (2009) J Raman Spectrosc 40(10):1392–1399CrossRefGoogle Scholar
  123. 123.
    Kawata S, Shalaev VM (2011) Tip enhancement. Elsevier, AmsterdamGoogle Scholar
  124. 124.
    Youssef KMS, Koch CC, Fedkiw PS (2004) Corros Sci 46(1):51–64CrossRefGoogle Scholar
  125. 125.
    Shacham–Diamand Y, Osaka T, Datta M, Ohba T (2009) Advanced nanoscale ULSI interconnects fundamentals and applications. Springer, New YorkCrossRefGoogle Scholar
  126. 126.
    Saito Y, Murakami T, Inouye Y, Kawata S (2005) Chem Lett 34(7):920–921CrossRefGoogle Scholar
  127. 127.
    Brejna PR, Griffiths PR (2010) Appl Spectrosc 64(5):493–499CrossRefGoogle Scholar
  128. 128.
    Zhang Q, Wu M, Zhao W (2005) Surf Coat Tech 192(2–3):213–219CrossRefGoogle Scholar
  129. 129.
    Saito Y, Wang JJ, Batchelder DN, Smith DA (2003) Langmuir 19(17):6857–6861CrossRefGoogle Scholar
  130. 130.
    Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86(26):263111CrossRefGoogle Scholar
  131. 131.
    Vakarelski IU, Higashitani K (2006) Langmuir 22(7):2931–2934Google Scholar
  132. 132.
    Sqalli O, Bernal MP, Hoffmann P, Marquis-Weible F (2000) Appl Phys Lett 76(15):2134–2136Google Scholar
  133. 133.
    Umakoshi T, Yano TA, Saito Y, Verma P (2012) Appl Phys Express 5(5):052001–052003Google Scholar
  134. 134.
    Okamoto T, Yamaguchi I (2001) J Microsc-oxford 202(1):100–103Google Scholar
  135. 135.
    Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Phys Rev Lett 95(1):017402CrossRefGoogle Scholar
  136. 136.
    Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban JJ, Pang YJ, Gordon R, Bokor J, Salmeron MB, Ogletree DF, Ashby P, Cabrini S, Schuck PJ (2011) Nano Lett 11(3):1201–1207CrossRefGoogle Scholar
  137. 137.
    Zou Y, Steinvurzel P, Yang T, Crozier KB (2009) Appl Phys Lett 94(17):171107CrossRefGoogle Scholar
  138. 138.
    De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nat Nanotechnol 5(1):67–72CrossRefGoogle Scholar
  139. 139.
    Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2012) Rev Sci Instrum 83(11):113704CrossRefGoogle Scholar
  140. 140.
    Fleischer M, Weber-Bargioni A, Altoe MVP, Schwartzberg AM, Schuck PJ, Cabrini S, Kern DP (2011) ACS Nano 5(4):2570–2579CrossRefGoogle Scholar
  141. 141.
    Christiansen SH, Becker M, Fahlbusch S, Michler J, Sivakov V, Andra G, Geiger R (2007) Nanotechnology 18(3):035503CrossRefGoogle Scholar
  142. 142.
    Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Science 338(6112):1317–1321CrossRefGoogle Scholar
  143. 143.
    Bek A, De Angelis F, Das G, Di Fabrizio E, Lazzarino M (2011) Micron 42(4):313–317CrossRefGoogle Scholar
  144. 144.
    Imad M, Atsushi T, Yuika S, Satoshi K, Verma P (2015) Appl Phys Express 8(3):032401CrossRefGoogle Scholar
  145. 145.
    Yang Y, Li ZY, Nogami M, Tanemura M, Huang Z (2014) RSC Adv 4(9):4718–4722CrossRefGoogle Scholar
  146. 146.
    Macpherson JV, Unwin PR (2000) Anal Chem 72(2):276–285CrossRefGoogle Scholar
  147. 147.
    Karral K, Grober RD (1995) Appl Phys Lett 66(14):1842–1844CrossRefGoogle Scholar
  148. 148.
    Zhang D, Wang X, Braun K, Egelhaaf HJ, Fleischer M, Hennemann L, Hintz H, Stanciu C, Brabec CJ, Kern DP, Meixner AJ (2009) J Raman Spectrosc 40(10):1371–1376CrossRefGoogle Scholar
  149. 149.
    Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–225CrossRefGoogle Scholar
  150. 150.
    Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Phys Rev B 73(19):193406CrossRefGoogle Scholar
  151. 151.
    Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V (2001) J Microsc-Oxford 202:72–76CrossRefGoogle Scholar
  152. 152.
    Christiane H, Lukas N (2008) Nanotechnology 19(38):384012CrossRefGoogle Scholar
  153. 153.
    Le NV, Mevellec JY, Minea T, Louarn G (2012) Int J Opt 2012:591083–591088Google Scholar
  154. 154.
    Johnson TW, Lapin ZJ, Beams R, Lindquist NC, Rodrigo SG, Novotny L, Oh SH (2012) ACS Nano 6(10):9168–9174CrossRefGoogle Scholar
  155. 155.
    Stadler J, Schmid T, Opilik L, Kuhn P, Dittrich PS, Zenobi R (2011) Beilstein J Nanotech 2(1):509–515CrossRefGoogle Scholar
  156. 156.
    Agapov RL, Sokolov AP, Foster MD (2013) J Raman Spectrosc 44(5):710–716CrossRefGoogle Scholar
  157. 157.
    Barbry M, Koval P, Marchesin F, Esteban R, Borisov AG, Aizpurua J, Sánchez-Portal D (2015) Nano Lett 15(5):3410–3419CrossRefGoogle Scholar
  158. 158.
    Zhang C, Chen BQ, Li ZY (2015) J Phys Chem C 119(21):11858–11871CrossRefGoogle Scholar
  159. 159.
    (2015) IRIS TERS probes. Accessed 14 Jan 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Analytical Sciences, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations