Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8243–8251 | Cite as

Paper membrane-based SERS platform for the determination of glucose in blood samples

  • Hilal Torul
  • Hakan Çiftçi
  • Demet Çetin
  • Zekiye Suludere
  • Ismail Hakkı Boyacı
  • Uğur TamerEmail author
Research Paper
Part of the following topical collections:
  1. Nanospectroscopy


In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm−1 which is attributed to B–OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.


Paper-based microfluidics Nitrocellulose membrane Glucose SERS Blood 



The authors acknowledge The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number Cost MP 1205-111T983 for funding.

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    Frank EA, Shubha MC, D’Souza CJM (2012) Blood glucose determination: plasma or serum? J Clin Lab Anal 26:317–320. doi: 10.1002/jcla.21524 CrossRefGoogle Scholar
  2. 2.
    Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010) Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid 8:105–114. doi: 10.1007/s10404-009-0450-5 CrossRefGoogle Scholar
  3. 3.
    Minnikanti S, Gangopadhyay A, Reyes D (2014) Polyelectrolyte multilayers in microfluidic systems for biological applications. Polym (Basel) 6:2100–2115. doi: 10.3390/polym6082100 CrossRefGoogle Scholar
  4. 4.
    Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57. doi: 10.1039/b611455e CrossRefGoogle Scholar
  5. 5.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  6. 6.
    Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929. doi: 10.1039/b502930a CrossRefGoogle Scholar
  7. 7.
    Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880. doi: 10.1039/b516401j CrossRefGoogle Scholar
  8. 8.
    Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538. doi: 10.1039/b705203k CrossRefGoogle Scholar
  9. 9.
    Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239. doi: 10.1039/b509386d CrossRefGoogle Scholar
  10. 10.
    VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771. doi: 10.1021/ac060042r CrossRefGoogle Scholar
  11. 11.
    Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors Actuators B Chem 130:216–221. doi: 10.1016/j.snb.2007.07.126 CrossRefGoogle Scholar
  12. 12.
    Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878. doi: 10.1039/c0lc00633e CrossRefGoogle Scholar
  13. 13.
    Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392. doi: 10.1039/c2lc21299d CrossRefGoogle Scholar
  14. 14.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707. doi: 10.1021/ac800112r CrossRefGoogle Scholar
  15. 15.
    Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76:564–570. doi: 10.1016/j.colsurfb.2009.12.023 CrossRefGoogle Scholar
  16. 16.
    Lu R, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500. doi: 10.1002/elps.200800563 CrossRefGoogle Scholar
  17. 17.
    Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by Wax printing. Anal Chem 82:329–335. doi: 10.1021/ac9020193 CrossRefGoogle Scholar
  18. 18.
    Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi: 10.1021/ar300314s CrossRefGoogle Scholar
  19. 19.
    Hartmeier W (1988) Immobilized biocatalysts. doi:  10.1007/978-3-642-73364-2
  20. 20.
    Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y (2008) Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering. Anal Chem 80:2799–2804. doi: 10.1021/ac702390u CrossRefGoogle Scholar
  21. 21.
    Hou SY, Chen HK, Cheng HC, Huang CY (2007) Development of zeptomole and attomolar detection sensitivity of biotin-peptide using a dot-blot goldnanoparticle immunoassay. Anal Chem 79:980–985. doi: 10.1021/ac061507g CrossRefGoogle Scholar
  22. 22.
    Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227. doi: 10.1016/j.bios.2009.05.006 CrossRefGoogle Scholar
  23. 23.
    Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. doi: 10.1063/1.3687398 Google Scholar
  24. 24.
    Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489. doi: 10.1021/ja043623b CrossRefGoogle Scholar
  25. 25.
    Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, Van Duyne RP (2005) Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal Chem 77:6134–6139. doi: 10.1021/ac051357u CrossRefGoogle Scholar
  26. 26.
    Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085. doi: 10.1039/c2cs35118h CrossRefGoogle Scholar
  27. 27.
    Liu GL, Lee LP (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett. doi: 10.1063/1.2031935 Google Scholar
  28. 28.
    Wang M, Benford M, Jing N, Coté G, Kameoka J (2009) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid Nanofluid 6:411–417. doi: 10.1007/s10404-008-0397-y CrossRefGoogle Scholar
  29. 29.
    Lim C, Hong J, Chung BG, deMello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135:837–844. doi: 10.1039/b919584j CrossRefGoogle Scholar
  30. 30.
    Yu WW, White IM (2010) Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630. doi: 10.1021/ac102475k CrossRefGoogle Scholar
  31. 31.
    Rahman MM, Ahammad AJ, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886. doi: 10.3390/s100504855 CrossRefGoogle Scholar
  32. 32.
    Al-Ogaidi I, Gou H, Al-kazaz AKA, Aguilar ZP, Melconian AK, Zheng P, Wu N (2014) A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal Chim Acta 811:76–80. doi: 10.1016/j.aca.2013.12.009 CrossRefGoogle Scholar
  33. 33.
    Baker GA, Desikan R, Thundat T (2008) Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. Anal Chem 80:4860–4865. doi: 10.1021/ac702588b CrossRefGoogle Scholar
  34. 34.
    Torun Ö, Dudak FC, Baş D, Tamer U, Boyaci IH (2009) Thermodynamic analysis of the interaction between 3-aminophenylboronic acid and monosaccharides for development of biosensor. Sensors Actuators B Chem 140:597–602. doi: 10.1016/j.snb.2009.05.004 CrossRefGoogle Scholar
  35. 35.
    Çiftçi H, Tamer U, Teker MŞ, Pekmez NÖ (2013) An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochim Acta 90:358–365. doi: 10.1016/j.electacta.2012.12.019 CrossRefGoogle Scholar
  36. 36.
    Torul H, Çiftçi H, Dudak FC, Adıgüzel Y, Kulah H, Boyacı İH, Tamer U (2014) Glucose determination based on a two component self-assembled monolayer functionalized surface-enhanced Raman spectroscopy (SERS) probe. Anal Methods 6:5097. doi: 10.1039/c4ay00559g CrossRefGoogle Scholar
  37. 37.
    Jiang H, Weng X, Chon CH, Wu X, Li D (2011) A microfluidic chip for blood plasma separation using electro-osmotic flow control. J Micromech Microeng 21:085019. doi: 10.1088/0960-1317/21/8/085019 CrossRefGoogle Scholar
  38. 38.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing a simple micropatterning process for paper based microfluidics.pdf. 81:7091–7095Google Scholar
  39. 39.
    Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. doi: 10.1039/c3lc50169h CrossRefGoogle Scholar
  40. 40.
    Rycenga M, McLellan JM, Xia Y (2008) A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose. Chem Phys Lett 463:166–171. doi: 10.1016/j.cplett.2008.08.062 CrossRefGoogle Scholar
  41. 41.
    Kanayama N, Kitano H (2000) Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayer. Langmuir 16:577–583. doi: 10.1021/la990182e CrossRefGoogle Scholar
  42. 42.
    Erdogdu Y, Tahir Güllüoǧlu M, Kurt M (2009) DFT, FT-Raman, FT-IR and NMR studies of 2-fluorophenylboronic acid. J Raman Spectrosc 40:1615–1623. doi: 10.1002/jrs.2309 CrossRefGoogle Scholar
  43. 43.
    Kurt M, Raci Sertbakan T, Özduran M, Karabacak M (2009) Infrared and Raman spectrum, molecular structure and theoretical calculation of 3,4-dichlorophenylboronic acid. J Mol Struct 921:178–187. doi: 10.1016/j.molstruc.2008.12.048 CrossRefGoogle Scholar
  44. 44.
    Manikantan Syamala Kiran, Tamitake Itoh*, Ken-ichi Yoshida, Nagako Kawashima VB, MI (2010) Selective detection of hba1c using surface enhanced resonance raman spectroscopy. Anal Chem 82:1342–1348. doi: 10.1021/ac902364h
  45. 45.
    Kong KV, Lam Z, On Lau WK, Leong WK, Olivo M (2013) A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J Am Chem Soc 135:18028–18031. doi: 10.1021/ja409230g
  46. 46.
    Alissa Z, Damon W, Yichuan L, Gongming W, Xuan Y, Boaz V, Bakthan S, Claire G, Yat L (2012) Novel molecular specific detection of glucose using a raman probe molecule with surface enhanced raman scattering. Sci Adv Mater 4(10):1047–1054. doi: 10.1166/sam.2012.1400

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hilal Torul
    • 1
  • Hakan Çiftçi
    • 2
  • Demet Çetin
    • 3
  • Zekiye Suludere
    • 4
  • Ismail Hakkı Boyacı
    • 5
  • Uğur Tamer
    • 1
    Email author
  1. 1.Faculty of Pharmacy, Department of Analytical ChemistryGazi UniversityAnkaraTurkey
  2. 2.Department of Chemistry and Chemical Processing Technologies, Kırıkkale Vocational High SchoolKırıkkale UniversityYahşihanTurkey
  3. 3.Science Teaching Programme, Gazi Faculty of EducationGazi UniversityAnkaraTurkey
  4. 4.Department of Biology, Faculty of ScienceGazi UniversityAnkaraTurkey
  5. 5.Department of Food EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations