Skip to main content

The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging

Abstract

The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite’s bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Helfrich MH, Ralston RS (2012) Bone research protocols (methods in molecular biology), 2nd ed. Springer, New York

  2. 2.

    Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10:031102–0311029

    Article  Google Scholar 

  3. 3.

    Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268

    CAS  Article  Google Scholar 

  4. 4.

    West PA, Bostrom MPG, Torzilli PA, Camacho NP (2004) Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl Spectrosc 58:376–381

    CAS  Article  Google Scholar 

  5. 5.

    Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907

    Article  Google Scholar 

  6. 6.

    Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    CAS  Article  Google Scholar 

  7. 7.

    Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    CAS  Article  Google Scholar 

  8. 8.

    Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech 40:910–918

    CAS  Article  Google Scholar 

  9. 9.

    Kazarian SG, Chan KLA, Maquet V, Boccaccini AR (2004) Characterisation of bioactive and resorbable polylactide/Bioglass(R) composites by FTIR spectroscopic imaging. Biomaterials 25:3931–3938

    CAS  Article  Google Scholar 

  10. 10.

    Anderson JJB, Garner CS (1996) Calcium and phosphorus in health and disease. CRC, Boca Raton

    Google Scholar 

  11. 11.

    Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    CAS  Article  Google Scholar 

  12. 12.

    Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    CAS  Article  Google Scholar 

  13. 13.

    Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478

    CAS  Article  Google Scholar 

  14. 14.

    Paschalis EPIA, Verdelis K, Yamauchi M, Mendelsohn R, Boskey AL (1998) Spectroscopic determination of collagen cross-links at the ultrastructural level and its application to osteoporosis. Bone 23:S342

    Google Scholar 

  15. 15.

    Ehrlich H, Hanke T, Simon P, Born R, Fischer C, Frolov A et al (2010) Carboxymethylation of the fibrillar collagen with respect to formation of hydroxyapatite. J Biomed Mater Res B Appl Biomater 92B:542–551

    CAS  Google Scholar 

  16. 16.

    Wise ER, Maltsev S, Davies ME, Duer MJ, Jaeger C, Loveridge N et al (2007) The organic-mineral interface in bone is predominantly polysaccharide. Chem Mater 19:5055–5057

    CAS  Article  Google Scholar 

  17. 17.

    Chan KLA, Kazarian SG (2013) Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows. Anal Chem 85:1029–1036

    CAS  Article  Google Scholar 

  18. 18.

    Leroy G, Penel G, Leroy N, Bres E (2002) Human tooth enamel: a Raman polarized approach. Appl Spectrosc 56:1030–1034

    CAS  Article  Google Scholar 

  19. 19.

    Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single-crystals and human enamel crystallites. J Dent Res 73:1703–1710

    CAS  Google Scholar 

  20. 20.

    Spring M, Ricci C, Peggie D, Kazarian SG (2008) FTIR imaging for the analysis of organic materials in paint cross sections: case studies on samples from paintings in the National Gallery, London. Anal Bioanal Chem 392:37–45

    CAS  Article  Google Scholar 

  21. 21.

    Kazarian SG, Chan KLA (2010) Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Appl Spectrosc 64:135A–152A

    CAS  Article  Google Scholar 

  22. 22.

    Belcarz A, Zima A, Ginalska G (2013) Biphasic mode of antibacterial action of aminoglycoside antibiotics-loaded elastic hydroxyapatite glucan composite. Int J Pharm 454:285–295

    CAS  Article  Google Scholar 

  23. 23.

    Belcarz A, Ginalska G, Polkowska I, Przekora A, Ślósarczyk A, Zima A, Paszkiewicz Z (2010) Pilot clinical study of efficacy of flexible HAp-based composite for bone defects replacement. Eng Biomater 99–101:16–28

    Google Scholar 

  24. 24.

    Belcarz A, Ginalska G, Ślósarczyk A, Paszkiewicz Z (2010) Bioactive composite and process for the production of the bioactive composite. European Patent EP 107266397

  25. 25.

    Borkowski L, Pawłowska M, Radzki RP, Bieńko M, Polkowska I, Belcarz A, Karpiński M, Słowik T, Matuszewski Ł, Ślósarczyk A, Ginalska G (2015) Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the tibial metaphysis of rabbits. Mater Sci Eng C 53:60–67

    CAS  Article  Google Scholar 

  26. 26.

    Chan KLA, Kazarian SG (2013) Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices. Analyst 138:4040–4047

    CAS  Article  Google Scholar 

  27. 27.

    Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim Biophys Acta 1688:176–186

    CAS  Article  Google Scholar 

  28. 28.

    Wood BR, Bambery KR, Evans CJ, Quinn MA, McNaughton D (2006) A three-dimensional multivariate image processing technique for the analysis of FTIR spectroscopic images of multiple tissue sections. BMC Med Imaging 6:12

    Article  Google Scholar 

  29. 29.

    Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53:1429–1435

    CAS  Article  Google Scholar 

  30. 30.

    Lalande C, Miraux S, Derkaoui SM, Mornet S, Bareille R, Fricain JC, Franconi JM, Le Visage C, Letourneur D, Amédée J, Bouzier-Sore AK (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cell Mater 21:341–354

    CAS  Google Scholar 

  31. 31.

    Neu CP, Arastu HF, Curtiss S, Reddi AH (2009) Characterization of engineered tissue construct mechanical function by magnetic resonance imaging. J Tissue Eng Regen Med 3:477–485

    CAS  Article  Google Scholar 

  32. 32.

    Agarwal A, Shao X, Rajian JR, Zhang H, Chamberland DL, Kotov NA, Wang X (2011) Dual-mode imaging with radiolabeled gold nanorods. J Biomed Opt 16:051307

    Article  Google Scholar 

  33. 33.

    Pan D, Hu Z, Qiu F, Huang ZL, Ma Y, Wang Y, Qin L, Zhang Z, Zeng S, Zhang YH (2014) A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat Commun 5:5573

    CAS  Article  Google Scholar 

  34. 34.

    Peter SJ, Yaszemski MJ, Suggs LJ, Payne RG, Langer R, Hayes WC, Unroe MR, Alemany LB, Engel PS, Mikos AG (1997) Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J Biomater Sci Polym Ed 8:893–904

    CAS  Article  Google Scholar 

  35. 35.

    Fu K, Griebenow K, Hsieh L, Klibanov AM, Langera R (1999) FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Control Release 58:357–366

    CAS  Article  Google Scholar 

  36. 36.

    Wang L, Jeong KJ, Chiang HH, Zurakowski D, Behlau I, Chodosh J, Dohlman CH, Langer R, Kohane DS (2011) Hydroxyapatite for keratoprosthesis biointegration. Invest Ophthalmol Vis Sci 52:7392–7399

    CAS  Article  Google Scholar 

  37. 37.

    Murray‐Wijelath J, Lyman DJ, Wijelath ES (2004) Vascular graft healing. III. FTIR analysis of ePTFE graft samples from implanted bigrafts. J Biomed Mater Res B Appl Biomater 70:223–232

    Article  Google Scholar 

  38. 38.

    Hua Xin LW, Yang G, Chen W (2011) Fourier transform infrared (FTIR) spectroscopic investigations on content in cartilage and bone. J Converg Inf Technol 6:404–410

    Article  Google Scholar 

  39. 39.

    Otsubo K, Katz EP, Mechanic GL, Yamauchi M (1992) Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde. Biochemistry 31:396–402

    CAS  Article  Google Scholar 

  40. 40.

    Wrobel TP, Marzec KM, Majzner K, Kochan K, Bartus M, Chlopicki S, Baranska M (2012) Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell. Analyst 137:4135–4139

    CAS  Article  Google Scholar 

  41. 41.

    Soares LGP, Marques AMC, Guarda MG, Aciole JMS, Andrade AS, Pinheiro ALB, Silveira L Jr (2014) Raman spectroscopic study of the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular HA + β-calcium triphosphate irradiated or not with λ850 nm LED light. Lasers Med Sci 29:1927–1936

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund within the Innovative Economy Operational Program, grant no. UDA-POIG 01.03.01-00-005/09-01. S.G.K. acknowledges the research funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/20072013)/ERC advanced grant agreement no. 227950. The authors would also like to acknowledge the research funding from the National Science Centre grant no. 5824/B/P01/2011/40, the Foundation for Polish Science (TEAM Programme 2009-4/5) and DS2/12 of the Medical University in Lublin. Raman equipment was purchased within the agreement no. PORPW.01.03.00-06-0109-00 Operational Program Development of Eastern Poland 2007–2013.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anna Sroka-Bartnicka or Sergei G. Kazarian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sroka-Bartnicka, A., Kimber, J.A., Borkowski, L. et al. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 407, 7775–7785 (2015). https://doi.org/10.1007/s00216-015-8943-4

Download citation

Keywords

  • IR spectroscopy
  • Raman spectroscopy
  • Biomaterials
  • Bone tissue engineering
  • Hydroxyapatite composite