Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8215–8224

In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models

  • Janna K. Register
  • Andrew M. Fales
  • Hsin-Neng Wang
  • Stephen J. Norton
  • Eugenia H. Cho
  • Alina Boico
  • Sulolit Pradhan
  • Jason Kim
  • Thies Schroeder
  • Natalie A. Wisniewski
  • Bruce Klitzman
  • Tuan Vo-Dinh
Research Paper
Part of the following topical collections:
  1. Nanospectroscopy

Abstract

Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.

Keywords

Surface-enhanced Raman scattering (SERS) Nanostar Plasmonics Nanoprobes In vivo detection Ex vivo sensing 

References

  1. 1.
    Vo-Dinh T, Hiromoto M, Begun G, Moody R (1984) Anal Chem 56:1667CrossRefGoogle Scholar
  2. 2.
    Vo-Dinh T (1998) TrAC. Trends Anal Chem 17:557CrossRefGoogle Scholar
  3. 3.
    Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H (2013) Nanoscale 5:10127–10140CrossRefGoogle Scholar
  4. 4.
    Yua H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Nanotechnology 23:075102CrossRefGoogle Scholar
  5. 5.
    Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) J Raman Spectrosc 44:234–239CrossRefGoogle Scholar
  6. 6.
    Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) Nanomedicine: NBM 8:1355–1363CrossRefGoogle Scholar
  7. 7.
    Fales AM, Yuan HK, Vo-Dinh T (2014) J Phys Chem C 118:3708–3715CrossRefGoogle Scholar
  8. 8.
    Souza GR, Levin CS, Hajitou A, Pasqualini R, Arap W, Miller JH (2006) Analytical Chemistry 78:6232–6237CrossRefGoogle Scholar
  9. 9.
    Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) Analytical Chemistry 78:7211–7215CrossRefGoogle Scholar
  10. 10.
    Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Anal Chem 75:5936–43CrossRefGoogle Scholar
  11. 11.
    Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Anal Chem 82:9058–9065CrossRefGoogle Scholar
  12. 12.
    Sha MY, Xu H, Natan MJ, Cromer R (2008) J Am Chem Soc 130:17214–15CrossRefGoogle Scholar
  13. 13.
    Stevenson R, Ingram A, Leung H, McMillan DC, Graham D (2009) Analyst 134:842–44CrossRefGoogle Scholar
  14. 14.
    Beier HT, Cowan CB, Chou IH, Pallikal J, Henry JE, Benford ME, Jackson JB, Good TA, Coet GL (2007) Plasmonics 2:55–64CrossRefGoogle Scholar
  15. 15.
    Benford ME, Chou IH, Beier HT, Wang M, Kameoka J, Good TA, Cote GL (2008) Proc SPIE 6869:W8690Google Scholar
  16. 16.
    An J–H, El-Said WA, Yea CH, Kim TH, Choi JW (2011) J Nanosci Nanotechnol 11:4424–29CrossRefGoogle Scholar
  17. 17.
    Shi C, Zhang Y, Gu C, Seballos L, Zhang JZ (2008) Proc SPIE 6852:685204/1Google Scholar
  18. 18.
    Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27:12186–12190CrossRefGoogle Scholar
  19. 19.
    Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361CrossRefGoogle Scholar
  20. 20.
    Fales A, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Molecular Pharmaceutics 10:2291–8CrossRefGoogle Scholar
  21. 21.
    Yuan H, Register JK, Wang HN, Fales AM, Liu Y, Vo-Dinh T (2013) Plasmonic nanoprobes for intracellular sensing and imaging. Anal Bioanal Chem 405:6165–80CrossRefGoogle Scholar
  22. 22.
    Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE Journal 51:1221–1232CrossRefGoogle Scholar
  23. 23.
    Cho EH, Boico A, Wisniewski NA, Gant R, Helton KL, Brown NL, Register JK, Vo-Dinh T, Schroeder T, Klitzman B (2014) microvascular integration into porous polyHEMA scaffold. Proc. SPIE 8958: Bioinspired, Biointegrated, Bioengineered Photonic Devices II. doi: 10.1117/12.2037950
  24. 24.
    Yamamoto YS, Itoh T, Sato H, Ozaki Y (2014) Vibrational Spectroscopy 74:132–136CrossRefGoogle Scholar
  25. 25.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology 21:1369–1377CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Janna K. Register
    • 1
  • Andrew M. Fales
    • 1
  • Hsin-Neng Wang
    • 1
  • Stephen J. Norton
    • 1
  • Eugenia H. Cho
    • 2
  • Alina Boico
    • 2
  • Sulolit Pradhan
    • 3
  • Jason Kim
    • 3
  • Thies Schroeder
    • 2
  • Natalie A. Wisniewski
    • 3
  • Bruce Klitzman
    • 2
  • Tuan Vo-Dinh
    • 1
  1. 1.Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and ChemistryDuke UniversityDurhamUSA
  2. 2.Medical CenterDuke UniversityDurhamUSA
  3. 3.Profusa, Inc.South San FranciscoUSA

Personalised recommendations