Analytical and Bioanalytical Chemistry

, Volume 407, Issue 25, pp 7713–7719 | Cite as

Human excretory products of selenium are natural constituents of marine fish muscle

  • Nina Kroepfl
  • Kenneth B. Jensen
  • Kevin A. Francesconi
  • Doris KuehneltEmail author
Research Paper


A selenosugar (selenosugar 1, methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside) was identified in aqueous extracts of muscle tissue of three marine fish species, mackerel (Scomber scombrus), sardine (Sardina pilchardus), and tuna (Thunnus albacares), by high-performance liquid chromatography coupled to elemental and high-resolution molecular mass spectrometry. Selenoneine (2-selenyl-Nα, Nα, Nα-trimethyl-L-histidine), a known selenium compound in fish, was the major form of selenium in the aqueous extracts, and the methylated derivative of selenoneine, namely Se-methylselenoneine, was also identified as a minor natural constituent in the fish. Selenosugar 1, a major urinary excretion product of selenium often found in organs and body fluids related to selenium excretion, has so far not been reported in muscle tissue. Se-methylselenoneine has been proposed as the main urinary metabolite from selenoneine. This first report of selenosugar 1 and Se-methylselenoneine as natural constituents of fish muscle tissue opens up a new perspective on the role of these compounds in selenium metabolism and is relevant to selenium supplementation studies.


Selenosugar Se-methylselenoneine HPLC-mass spectrometry Fish muscle 



We thank NAWI Graz and the Styrian Government for supporting the Graz Central Lab-Metabolomics.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2015_8936_MOESM1_ESM.pdf (339 kb)
ESM 1 (PDF 339 kb)


  1. 1.
    Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141CrossRefGoogle Scholar
  2. 2.
    Olmedo P, Hernández AF, Pla A, Femia P, Navas-Acien A, Gil F (2013) Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem Toxicol 62:299–307CrossRefGoogle Scholar
  3. 3.
    Murphy J, Cashman KD (2001) Selenium content of a range of Irish foods. Food Chem 74:493–498CrossRefGoogle Scholar
  4. 4.
    Cabañero AI, Carvalho C, Madrid Y, Batoréu C, Cámara C (2005) Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. Biol Trace Elem Res 103:17–35CrossRefGoogle Scholar
  5. 5.
    Moreno P, Quijano MA, Gutiérrez AM, Pérez-Conde MC, Cámara C (2004) Study of selenium species distribution in biological tissues by size exclusion and ion exchange chromatography inductively coupled plasma–mass spectrometry. Anal Chim Acta 524:315–327CrossRefGoogle Scholar
  6. 6.
    Quijano MA, Moreno P, Gutiérrez AM, Pérez-Conde MC, Cámara C (2000) Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Mass Spectrom 35:878–884CrossRefGoogle Scholar
  7. 7.
    Hinojosa Reyes L, Mar JLG, Rahman GMM, Seybert B, Fahrenholz T, Kingston HMS (2009) Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography–inductively coupled plasma mass spectrometry. Talanta 78:983–990CrossRefGoogle Scholar
  8. 8.
    Díaz Huerta V, Fernández Sánchez ML, Sanz-Medel A (2004) Quantitative selenium speciation in cod muscle by isotope dilution ICP-MS with a reaction cell: comparison of different reported extraction procedures. J Anal At Spectrom 19:644–648CrossRefGoogle Scholar
  9. 9.
    Pedrero Z, Murillo S, Cámara C, Schram E, Luten JB, Feldmann I, Jakubowski N, Madrid Y (2011) Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet. J Anal At Spectrom 26:116–125CrossRefGoogle Scholar
  10. 10.
    Le XC, Li XF, Lai V, Ma M, Yalcin S, Feldmann J (1998) Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection. Spectrochim Acta B 53:899–909CrossRefGoogle Scholar
  11. 11.
    Misra S, Peak D, Chen N, Hamilton C, Niyogi S (2012) Tissue-specific accumulation and speciation of selenium in rainbow trout (Oncorhynchus mykiss) exposed to elevated dietary selenomethionine. Comp Biochem Physiol C Toxicol Pharmacol 155:560–565CrossRefGoogle Scholar
  12. 12.
    Yamashita Y, Yamashita M (2010) Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem 285:18134–18138CrossRefGoogle Scholar
  13. 13.
    Yamashita Y, Amlund H, Suzuki T, Hara T, Hossain MA, Yabu T, Touhata K, Yamashita M (2011) Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish Sci 77:679–686CrossRefGoogle Scholar
  14. 14.
    Klein M, Ouerdane L, Bueno M, Pannier F (2011) Identification in human urine and blood of a novel selenium metabolite, Se-methylselenoneine, a potential biomarker of metabolization in mammals of the naturally occurring selenoneine, by HPLC coupled to electrospray hybrid linear ion trap-orbital ion trap MS. Metallomics 3:513–520CrossRefGoogle Scholar
  15. 15.
    Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT (2002) Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A 99:15932–15936CrossRefGoogle Scholar
  16. 16.
    Gammelgaard B, Madsen KG, Bjerrum J, Bendahl L, Jøns O, Olsen J, Sidenius U (2003) Separation, purification and identification of the major selenium metabolite from human urine by multi-dimensional HPLC-ICP-MS and APCI-MS. J Anal At Spectrom 18:65–70CrossRefGoogle Scholar
  17. 17.
    Gammelgaard B, Bendahl L (2004) Selenium speciation in human urine samples by LC- and CE-ICP-MS—separation and identification of selenosugars. J Anal At Spectrom 19:135–142CrossRefGoogle Scholar
  18. 18.
    Suzuki KT, Doi C, Suzuki N (2006) Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicol Appl Pharmacol 217:185–195CrossRefGoogle Scholar
  19. 19.
    Suzuki Y, Hashiura Y, Matsumura K, Matsukawa T, Shinohara A, Furuta N (2010) Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses. Metallomics 2:126–132CrossRefGoogle Scholar
  20. 20.
    Bendahl L, Gammelgaard B (2004) Separation and identification of Se-methylselenogalactosamine—a new metabolite in basal human urine—by HPLC-ICP-MS and CE-nano-ESI-(MS)2. J Anal At Spectrom 19:950–957CrossRefGoogle Scholar
  21. 21.
    Gammelgaard B, Bendahl L, Wessel Jacobsen N, Stürup S (2005) Quantitative determination of selenium metabolites in human urine by LC-DRC-ICP-MS. J Anal At Spectrom 20:889–893CrossRefGoogle Scholar
  22. 22.
    Juresa D, Blanusa M, Francesconi KA, Kienzl N, Kuehnelt D (2007) Biological availability of selenosugars in rats. Chem Biol Interact 168:203–210CrossRefGoogle Scholar
  23. 23.
    Kuehnelt D, Juresa D, Kienzl N, Francesconi KA (2006) Marked individual variability in the levels of trimethylselenonium ion in human urine determined by HPLC/ICPMS and HPLC/vapor generation/ICPMS. Anal Bioanal Chem 386:2207–2212CrossRefGoogle Scholar
  24. 24.
    Jäger T, Drexler H, Göen T (2013) Ion pairing and ion exchange chromatography coupled to ICP-MS to determine selenium species in human urine. J Anal At Spectrom 28:1402–1409CrossRefGoogle Scholar
  25. 25.
    González-Iglesias H, Fernández-Sánchez ML, Lu Y, Fernández Menéndez S, Pergantis SA, Sanz-Medel A (2015) Elemental and molecular mass spectrometry for integrated selenosugar speciation in liver and kidney tissues of maternal feeding and supplemented rats. J Anal At Spectrom 30:267–276Google Scholar
  26. 26.
    Lu Y, Pergantis SA (2009) Selenosugar determination in porcine liver using multidimensional HPLC with atomic and molecular mass spectrometry. Metallomics 1:346–352CrossRefGoogle Scholar
  27. 27.
    Anan Y, Ishiwata K, Suzuki N, Tanabe S, Ogra Y (2011) Speciation and identification of low molecular weight selenium compounds in the liver of sea turtles. J Anal At Spectrom 26:80–85CrossRefGoogle Scholar
  28. 28.
    Anan Y, Ohbo A, Tani Y, Hatakeyama Y, Yawata A, Ogra Y (2012) Distribution and metabolism of selenite and selenomethionine in the Japanese quail. Metallomics 4:457–462CrossRefGoogle Scholar
  29. 29.
    Kokarnig S, Tsirigotaki A, Wiesenhofer T, Lackner V, Francesconi KA, Pergantis SA, Kuehnelt D (2015) Concurrent quantitative HPLC–mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements. J Trace Elem Med Biol 29:83–90CrossRefGoogle Scholar
  30. 30.
    Traar P, Belaj F, Francesconi KA (2004) Synthesis of methyl 2-acetamido-2-deoxy-1-seleno-β-D-gluco- and galacto-pyranoside: selenium metabolites in human urine. Aust J Chem 57:1051–1053CrossRefGoogle Scholar
  31. 31.
    Gammelgaard B, Gabel-Jensen C, Stürup S, Rüsz Hansen H (2008) Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism. Anal Bioanal Chem 390:1691–1706CrossRefGoogle Scholar
  32. 32.
    Suzuki KT, Somekawa L, Suzuki N (2006) Distribution and reuse of 76Se-selenosugar in selenium-deficient rats. Toxicol Appl Pharmacol 216:303–308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nina Kroepfl
    • 1
  • Kenneth B. Jensen
    • 1
  • Kevin A. Francesconi
    • 1
  • Doris Kuehnelt
    • 1
    Email author
  1. 1.Institute of Chemistry, Analytical Chemistry, NAWI GrazUniversity of GrazGrazAustria

Personalised recommendations