Analytical and Bioanalytical Chemistry

, Volume 407, Issue 25, pp 7625–7635 | Cite as

Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS

  • Jiří ŠalplachtaEmail author
  • Anna Kubesová
  • Jaroslav Horký
  • Hana Matoušková
  • Marie Tesařová
  • Marie Horká
Research Paper


Dickeya and Pectobacterium species represent an important group of broad-host-range phytopathogens responsible for blackleg and soft rot diseases on numerous plants including many economically important plants. Although these species are commonly detected using cultural, serological, and molecular methods, these methods are sometimes insufficient to classify the bacteria correctly. On that account, this study was undertaken to investigate the feasibility of three individual analytical techniques, capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), for reliable classification of Dickeya and Pectobacterium species. Forty-three strains, representing different Dickeya and Pectobacterium species, namely Dickeya dianthicola, Dickeya dadantii, Dickeya dieffenbachiae, Dickeya chrysanthemi, Dickeya zeae, Dickeya paradisiaca, Dickeya solani, Pectobacterium carotovorum, and Pectobacterium atrosepticum, were selected for this purpose. Furthermore, the selected bacteria included one strain which could not be classified using traditional microbiological methods. Characterization of the bacteria was based on different pI values (CIEF), migration velocities (CZE), or specific mass fingerprints (MALDI-TOF MS) of intact cells. All the examined strains, including the undetermined bacterium, were characterized and classified correctly into respective species. MALDI-TOF MS provided the most reliable results in this respect.


Dickeya Pectobacterium CZE CIEF MALDI 



This work was supported by a grant from the Ministry of the Interior of the Czech Republic (No. VG20112015021) and with the institutional support (RVO: 68081715).


  1. 1.
    Samson R, Legendre JB, Christen R, Fishcer-Le Saux M, Achouak W, Gardan L (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427CrossRefGoogle Scholar
  2. 2.
    Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163CrossRefGoogle Scholar
  3. 3.
    Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Helias V, Pirhonen M, Tsror L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–399CrossRefGoogle Scholar
  4. 4.
    Czajkowski R, Grabe G, van der Wolf JM (2009) Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. Eur J Plant Pathol 125:263–275CrossRefGoogle Scholar
  5. 5.
    Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013CrossRefGoogle Scholar
  6. 6.
    Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234CrossRefGoogle Scholar
  7. 7.
    Tsror L, Erlich O, Hazanovsky M, Daniel DB, Zig U, Lebiush S (2012) Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathol 61:161–168CrossRefGoogle Scholar
  8. 8.
    Tsror L, Daniel DB, Chalupowicz L, van der Wolf JM, Lebiush S, Erlich O, Dror O, Barel V, Nijhuis EH, Manulis-Sasson S (2013) Characterization of Dickeya strains isolated from potato grown under hot-climate conditions. Plant Pathol 62:1097–1105CrossRefGoogle Scholar
  9. 9.
    Moleleki LN, Onkendi EM, Mongae A, Kubheka GC (2013) Characterisation of Pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur J Plant Pathol 135:279–288CrossRefGoogle Scholar
  10. 10.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629CrossRefGoogle Scholar
  11. 11.
    Nabhan S, De Boer SH, Maiss E, Wydra K (2013) Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 63:2520–2525CrossRefGoogle Scholar
  12. 12.
    Van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, Waleron M, de Vos P, Cleenwerck I, Pirhonen M, Garlant L, Hélias V, Pothier JF, Pflüger V, Duffy B, Tsror L, Manulis S (2014) Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 64:768–774CrossRefGoogle Scholar
  13. 13.
    Janse JD (2012) Bacterial diseases that may or do emerge, with (possible) economic damage for Europe and the Mediterranean basis: notes on epidemiology, risk, prevention and management on first occurrence. J Plant Pathol 94:S4.5–S4.29Google Scholar
  14. 14.
    Tsror L, Erlich O, Lebiush S, Hazanovsky M, Zig U, Slawiak M, Grabe G, van der Wolf JM, van der Haar JJ (2009) Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur J Plant Pathol 123:311–320CrossRefGoogle Scholar
  15. 15.
    Parkinson N, Stead D, Bew J, Heeney J, Tsror L, Elphinstone J (2009) Dickeya species relatedness and clade structure determined by comparison of recA sequences. Int J Syst Evol Microbiol 59:2388–2393CrossRefGoogle Scholar
  16. 16.
    Sasser M (1990) Technical note 102: tracking a strain using the Microbial Identification System. MIS, North NewarkGoogle Scholar
  17. 17.
    Czajkowski R, Pérombelon MCM, Jafra S, Lojkowska E, Potrykus M, van der Wolf JM, Sledz W (2015) Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann Appl Biol 166:18–38CrossRefGoogle Scholar
  18. 18.
    Pritchard L, Humphris S, Saddler GS, Parkinson NM, Bertrand V, Elphinstone JG, Toth IK (2013) Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol 62:587–596CrossRefGoogle Scholar
  19. 19.
    Van der Wolf JM, de Haas BH, van Hoof R, de Haan EG, van den Bovenkamp GW (2014) Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. Eur J Plant Pathol 138:695–709CrossRefGoogle Scholar
  20. 20.
    Slawiak M, van Doorn R, Szemes M, Speksnijderm AGCL, Waleron M, van der Wolf JM, Lojkowska E, Schoen CD (2013) Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes. Ann Appl Biol 163:378–393Google Scholar
  21. 21.
    Liu Z, Wu SS, Pawliszyn J (2007) Characterization of plant growth-promoting rhizobacteria using capillary isoelectric focusing with whole column imaging detection. J Chromatogr A 1140:213–218CrossRefGoogle Scholar
  22. 22.
    Horká M, Horký J, Kubesová A, Mazanec K, Matoušková H, Šlais K (2010) Electromigration techniques—a fast and economical tool for differentiation of similar strains of microorganisms. Analyst 135:1636–1644CrossRefGoogle Scholar
  23. 23.
    Šalplachta J, Kubesová A, Moravcová D, Vykydalová M, Süle S, Matoušková H, Horký J, Horká M (2013) Use of electrophoretic techniques and MALDI-TOF MS for rapid and reliable characterization of bacteria: analysis of intact cells, cell lysates, and “washed pellets”. Anal Bioanal Chem 405:3165–3175CrossRefGoogle Scholar
  24. 24.
    Horká M, Šalplachta J, Karásek P, Kubesová A, Horký J, Matoušková H, Šlais K, Roth M (2013) Combination of capillary isoelectric focusing in a tapered capillary with MALDI-TOF MS for rapid and reliable identification of Dickeya species from plant samples. Anal Chem 85:6806–6812CrossRefGoogle Scholar
  25. 25.
    Subirats X, Blaas D, Kenndler E (2011) Recent developments in capillary and chip electrophoresis of bioparticles: viruses, organelles, and cells. Electrophoresis 32:1579–1590Google Scholar
  26. 26.
    Lartigue MF (2013) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect Genet Evol 13:230–235CrossRefGoogle Scholar
  27. 27.
    Ahmad F, Babalola OO, Tak HI (2012) Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms. Anal Bioanal Chem 404:1247–1255CrossRefGoogle Scholar
  28. 28.
    Rodriguez MA, Armstrong DW (2004) Separation and analysis of colloidal/nano-particles including microorganisms by capillary electrophoresis: a fundamental review. J Chromatogr B 800:7–25CrossRefGoogle Scholar
  29. 29.
    Kremser L, Blaas D, Kenndler E (2004) Capillary electrophoresis of biological particles: viruses, bacteria, and eukaryotic cells. Electrophoresis 25:2282–2291CrossRefGoogle Scholar
  30. 30.
    Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. Trends Anal Chem 31:9–22CrossRefGoogle Scholar
  31. 31.
    Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11CrossRefGoogle Scholar
  32. 32.
    Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR (2010) Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): applications and challenges. Adv Appl Microbiol 71:149–184CrossRefGoogle Scholar
  33. 33.
    Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32:188–217CrossRefGoogle Scholar
  34. 34.
    Hirokawa T, Nishino M, Aoki N, Sawamoto YKTY, Akiyama JI (1983) Table of isotachophoretic indices: I. Simulated qualitative and quantitative indices of 287 anionic substances in the range ph 3–10. J Chromatogr A 271:D1–D106CrossRefGoogle Scholar
  35. 35.
    Acevedo F (1991) Use of discrete spacers for the separation of proteins by gel isotachophoresis. J Chromatogr A 545:391–396CrossRefGoogle Scholar
  36. 36.
    Horká M, Růžička F, Holá V, Šlais K (2006) Capillary isoelectric focusing of microorganisms in the pH range 2–5 in a dynamically modified FS capillary with UV detection. Anal Bioanal Chem 385:840–846CrossRefGoogle Scholar
  37. 37.
    Šťastná M, Trávníček M, Šlais K (2005) New azo dyes as colored isoelectric point markers for isoelectric focusing in acidic pH region. Electrophoresis 26:53–59CrossRefGoogle Scholar
  38. 38.
    Šťastná M, Šlais K (2003) Dynamics of gel isoelectric focusing with ampholytic dyes monitored by camera in real-time. J Chromatogr A 1008:193–203CrossRefGoogle Scholar
  39. 39.
    Buyer JS (2006) Rapid and sensitive FAME analysis of bacteria by cold trap injection gas chromatography. J Microbiol Methods 67:187–190CrossRefGoogle Scholar
  40. 40.
    Nassar A, Darrasse A, Lemattre M, Kotoujansky A, Dervin C, Vedel R, Bertheau Y (1996) Characterization of Erwinia chrysanthemi by pectinolytic isoenzyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Appl Environ Microbiol 62:2228–2235Google Scholar
  41. 41.
    Horká M, Růžička F, Horký J, Holá V, Šlais K (2006) Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. J Chromatogr B 841:152–159CrossRefGoogle Scholar
  42. 42.
    Righetti PG (2004) Determination of the isoelectric point of proteins by capillary isoelectric focusing. J Chromatogr A 1037:491–499CrossRefGoogle Scholar
  43. 43.
    Kobayashi H, Aoki M, Suzuki M, Yanagisawa A, Arai E (1997) Evaluation of pH gradient formation of carrier ampholytes with synthesized isoelectric point markers in capillary isoelectric focusing. J Chromatogr A 772:137–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jiří Šalplachta
    • 1
    Email author
  • Anna Kubesová
    • 1
  • Jaroslav Horký
    • 2
  • Hana Matoušková
    • 2
  • Marie Tesařová
    • 1
  • Marie Horká
    • 1
  1. 1.Institute of Analytical Chemistry of the ASCRBrnoCzech Republic
  2. 2.Division of DiagnosticsCentral Institute for Supervising and Testing in AgricultureOlomoucCzech Republic

Personalised recommendations