Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8205–8213 | Cite as

Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale

  • Maria Vanessa Balois
  • Norihiko HayazawaEmail author
  • Francesca Celine Catalan
  • Satoshi Kawata
  • Taka-aki Yano
  • Tomohiro Hayashi
Research Paper
Part of the following topical collections:
  1. Nanospectroscopy


Local temperature of a nanoscale volume is precisely determined by tip-enhanced terahertz Raman spectroscopy in the low temperature range of several tens of degrees. Heat generated by the tip-enhanced electric field is directly transferred to single-walled carbon nanotubes by heat conduction and radiation at the nanoscale. This heating modulates the intensity ratio of anti-Stokes/Stokes Raman scattering of the radial breathing mode of the carbon nanotube based on the Boltzmann distribution at elevated temperatures. Owing to the low-energy feature of the radial breathing mode, the local temperature of the probing volume has been successfully extracted with high sensitivity. The dependence of the temperature rise underneath the tip apex on the incident power coincides with the analytical results calculated by finite element method based on the tip enhancement effect and the consequent steady-state temperature via Joule heat generation. The results show that the local temperature at the nanoscale can be controlled in the low temperature range simply by the incident laser power while exhibiting a sufficiently high tip enhancement effect as an analytical tool for thermally sensitive materials (e.g., proteins, DNA).

Graphical Abstract

Tip-enhanced THz Raman spectroscopy detects the low frequency Raman mode both in Stokes and anti-Stokes shifts, which precisely reflects the local temperature of the sample volume


IR spectroscopy/Raman spectroscopy Nanoparticles/nanotechnology Bioanalytical methods Laser spectroscopy Thermal methods 



We gratefully acknowledge the financial support by the “Grant-in-Aid for Young Scientists A” No. 24686009 (N.H.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the ‘Program for Junior Scientists – International Program Associate’ (M.V.B.) from The Institute of Physical and Chemical Research (RIKEN).


  1. 1.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333–336CrossRefGoogle Scholar
  2. 2.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  3. 3.
    Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76:3130CrossRefGoogle Scholar
  4. 4.
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L (2003) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett 90:095503CrossRefGoogle Scholar
  5. 5.
    Pettinger B, Ren B, Picardi G, Schuster R, Erti G (2004) Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92:096101CrossRefGoogle Scholar
  6. 6.
    Schmid T, Opilik L, Blum C, Zenobi R (2013) Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew Chem Int Ed 52:5940–5954CrossRefGoogle Scholar
  7. 7.
    Kawata S, Shalaev VM (2007) Tip enhancement. Elsevier, The NetherlandsGoogle Scholar
  8. 8.
    Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37:311–317CrossRefGoogle Scholar
  9. 9.
    Najjar S, Talaga D, Schué L, Coffinier Y, Szunerits S, Boukherroub R, Servant L, Rodriguez V, Bonhommeau (2014) Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J Phys Chem C 118:1174–1181CrossRefGoogle Scholar
  10. 10.
    Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed 47:1658–1661CrossRefGoogle Scholar
  11. 11.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus Epidermidis. ChemPhysChem 8:124–137CrossRefGoogle Scholar
  12. 12.
    Budich C, Neugebauer U, Popp J, Deckert V (2008) Cell wall investigations utilizing tip-enhanced Raman scatter. J Microsc 229:533–539CrossRefGoogle Scholar
  13. 13.
    Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240–243CrossRefGoogle Scholar
  14. 14.
    Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome c. J Phys Chem C 112:4867–4873CrossRefGoogle Scholar
  15. 15.
    Paulite M, Blum C, Schmid T, Opilik L, Eyer K, Walker GC, Zenobi R (2013) Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from ß-amyloid (1–40) peptide fragments. ACS Nano 7:911–920CrossRefGoogle Scholar
  16. 16.
    Liu Z, Ding SY, Chen ZB, Wang X, Tian JH, Anema JR, Zhou XS, Wu DY, Mao BW, Xu X, Ren B, Tian ZQ (2011) Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat Commun 2:305CrossRefGoogle Scholar
  17. 17.
    Van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol 7:583–586CrossRefGoogle Scholar
  18. 18.
    Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nanoscale 7:7133–7137CrossRefGoogle Scholar
  19. 19.
    Downes A, Salter D, Elfick A (2006) Heating effects in tip-enhanced optical microscopy. Opt Express 14:5216–5222CrossRefGoogle Scholar
  20. 20.
    Zhang W, Schmid T, Yeo BS, Zenobi R (2008) Near-field heating, annealing, and signal loss tip-enhanced Raman spectroscopy. J Phys Chem C 112:2104–2108CrossRefGoogle Scholar
  21. 21.
    Malkovskiy AV, Malkovsky VI, Kisliuk AM, Barrios CA, Foster MD, Sokolov AP (2009) Tip-induced heating in apertureless near-field optics. J Raman Spectrosc 40:1349–1354CrossRefGoogle Scholar
  22. 22.
    Tarun T, Hayazawa N, Yano T, Kawata S (2011) Tip-heating-assisted Raman spectroscopy at elevated temperatures. J Raman Spectrosc 42:992–997CrossRefGoogle Scholar
  23. 23.
    Hart TR, Aggarwal L, Lax B (1970) Temperature dependence of Raman scattering in silicon. Phys Rev B 1:638CrossRefGoogle Scholar
  24. 24.
    Hayazawa N, Yano T, Kawata S (2012) Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. J Raman Spectrosc 43:1177–1182Google Scholar
  25. 25.
    Long DA (1976) Raman spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Raravikar NR, Keblinski P, Rao AM, Dresselhaus MS, Schadler LS, Ajayan PM (2002) Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B 66:235424CrossRefGoogle Scholar
  27. 27.
    Chiashi S, Murakami Y, Miyauchi Y, Murayama S (2008) Temperature dependence of Raman scattering from single-walled carbon nanotubes: undefined radial breathing mode peaks at high temperatures. Jpn J Appl Phys 47:2010–2015CrossRefGoogle Scholar
  28. 28.
    Zhang R, Zhang Y, Dong C, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86CrossRefGoogle Scholar
  29. 29.
    Chen C, Hayazawa N, Kawata S (2013) A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun 5:3312Google Scholar
  30. 30.
    Deckert-Gaudig T, Kämmer E, Deckert V (2012) Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. J Biophotonics 5:215–219CrossRefGoogle Scholar
  31. 31.
    Oguchi M, Mochizuki M, Yano T, Hara M, Hayashi T (2014) Light-transmittable ultrasmooth gold film for gap-mode tip-enhanced Raman scattering spectroscopy. Chem Lett 43:808–810CrossRefGoogle Scholar
  32. 32.
    Deckert-Gaudig T, Deckert V (2009) Ultraflat transparent gold nanoplates—ideal substrates for tip-enhanced Raman scattering experiments. Small 5:432–436CrossRefGoogle Scholar
  33. 33.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRefGoogle Scholar
  34. 34.
    Hayazawa N, Saito Y, Kawata S (2004) Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl Phys Lett 85:6239–6241CrossRefGoogle Scholar
  35. 35.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRefGoogle Scholar
  36. 36.
    Palik ED (1998) Handbook of optical constants of solids. Academic Press, LondonGoogle Scholar
  37. 37.
    Khan WA, Khan ZH, Rahi M (2014) Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl Nanosci 4:633–641CrossRefGoogle Scholar
  38. 38.
    Feng B, Zhixin L, Zhang X (2009) Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517:2803–2807CrossRefGoogle Scholar
  39. 39.
    Albella A, de la Osa RA, Moreno F, Maier SA (2014) Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon 1:524–529CrossRefGoogle Scholar
  40. 40.
    Ci L, Zhou Z, Song L, Yan X, Liu D, Yuan H, Gao Y, Wang J, Liu L, Zhou W, Wang G, Xie S (2003) Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Appl Phys Lett 82:3098CrossRefGoogle Scholar
  41. 41.
    Hermann P, Hermelink A, Lausch V, Holland G, Möller L, Bannert N, Naumann D (2011) Evaluation of tip-enhanced Raman spectroscopy for characterizing different virus strains. Analyst 136:1148–1152CrossRefGoogle Scholar
  42. 42.
    Lazarevic JJ, Uskokovic-Markovic S, Jelikic-Stankov M, Radonjic M, Tanaskovic D, Lazarevic N, Popovic ZV (2014) Intermolecular and low-frequency intramolecular Raman scattering study of racemic ibuprofen. Spectrochim Acta A Mol Biomol Spectrosc 126:301–305CrossRefGoogle Scholar
  43. 43.
    Rzeznicka II, Horino H, Kikkawa N, Sakaguchi S, Morita A, Takahashi S, Komeda T, Fukumura H, Yamada T, Kawai M (2013) Tip-enhanced Raman spectroscopy of 4,4’-bipyridine N, N’-dioxide adsorbed on gold thin films. Surf Sci 617:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maria Vanessa Balois
    • 1
    • 2
    • 3
  • Norihiko Hayazawa
    • 1
    • 2
    • 3
    • 4
    Email author
  • Francesca Celine Catalan
    • 1
    • 2
  • Satoshi Kawata
    • 1
  • Taka-aki Yano
    • 3
  • Tomohiro Hayashi
    • 3
  1. 1.Near-field Nanophotonics Research Team, RIKENThe Institute of Physical and Chemical ResearchWakoJapan
  2. 2.Surface and Interface Science Laboratory, RIKENThe Institute of Physical and Chemical ResearchWakoJapan
  3. 3.Department of Electronic ChemistryTokyo Institute of TechnologyNagatsutaJapan
  4. 4.Innovative Photon Manipulation Research Team, RIKENThe Institute of Physical and Chemical ResearchWakoJapan

Personalised recommendations