Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8205–8213

Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale

  • Maria Vanessa Balois
  • Norihiko Hayazawa
  • Francesca Celine Catalan
  • Satoshi Kawata
  • Taka-aki Yano
  • Tomohiro Hayashi
Research Paper

DOI: 10.1007/s00216-015-8866-0

Cite this article as:
Balois, M.V., Hayazawa, N., Catalan, F.C. et al. Anal Bioanal Chem (2015) 407: 8205. doi:10.1007/s00216-015-8866-0
Part of the following topical collections:
  1. Nanospectroscopy

Abstract

Local temperature of a nanoscale volume is precisely determined by tip-enhanced terahertz Raman spectroscopy in the low temperature range of several tens of degrees. Heat generated by the tip-enhanced electric field is directly transferred to single-walled carbon nanotubes by heat conduction and radiation at the nanoscale. This heating modulates the intensity ratio of anti-Stokes/Stokes Raman scattering of the radial breathing mode of the carbon nanotube based on the Boltzmann distribution at elevated temperatures. Owing to the low-energy feature of the radial breathing mode, the local temperature of the probing volume has been successfully extracted with high sensitivity. The dependence of the temperature rise underneath the tip apex on the incident power coincides with the analytical results calculated by finite element method based on the tip enhancement effect and the consequent steady-state temperature via Joule heat generation. The results show that the local temperature at the nanoscale can be controlled in the low temperature range simply by the incident laser power while exhibiting a sufficiently high tip enhancement effect as an analytical tool for thermally sensitive materials (e.g., proteins, DNA).

Graphical Abstract

Tip-enhanced THz Raman spectroscopy detects the low frequency Raman mode both in Stokes and anti-Stokes shifts, which precisely reflects the local temperature of the sample volume

Keywords

IR spectroscopy/Raman spectroscopy Nanoparticles/nanotechnology Bioanalytical methods Laser spectroscopy Thermal methods 

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maria Vanessa Balois
    • 1
    • 2
    • 3
  • Norihiko Hayazawa
    • 1
    • 2
    • 3
    • 4
  • Francesca Celine Catalan
    • 1
    • 2
  • Satoshi Kawata
    • 1
  • Taka-aki Yano
    • 3
  • Tomohiro Hayashi
    • 3
  1. 1.Near-field Nanophotonics Research Team, RIKENThe Institute of Physical and Chemical ResearchWakoJapan
  2. 2.Surface and Interface Science Laboratory, RIKENThe Institute of Physical and Chemical ResearchWakoJapan
  3. 3.Department of Electronic ChemistryTokyo Institute of TechnologyNagatsutaJapan
  4. 4.Innovative Photon Manipulation Research Team, RIKENThe Institute of Physical and Chemical ResearchWakoJapan

Personalised recommendations