Skip to main content

Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence

Abstract

Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE+) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE+ per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE+ signal from possible interferences.

Indirect detection of intracellular superoxide production in macrophages using MitoHE and microchip electrophoresis with laser induced fluorescence detection

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ma ZA, Zhao Z, Turk J (2012) Exp Diabetes Res. doi:10.1155/2012/703538

    Google Scholar 

  2. 2.

    Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Proc Natl Acad Sci 103:15038–15043

    CAS  Article  Google Scholar 

  3. 3.

    Ferrer-Sueta G, Radi R (2009) Chem Biol 4:161–177

    CAS  Google Scholar 

  4. 4.

    Estévez AG, Jordán J (2002) Ann N Y Acad Sci 962:207–211

    Article  Google Scholar 

  5. 5.

    Kagan VE, Tyurina YY, Tyurin V, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Toxicol Lett 165:88–100

    CAS  Article  Google Scholar 

  6. 6.

    Li H, Li Q, Wang X, Xu K, Chen Z, Gong X, Liu X, Tong L, Tang B (2009) Anal Chem 81:2193–2198

    CAS  Article  Google Scholar 

  7. 7.

    Abbas K, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Peyrot F (2014) Free Radic Biol Med 71:281–290

    CAS  Article  Google Scholar 

  8. 8.

    Ambrozova G, Pekarova M, Lojek A (2011) Toxicol Vitr 25:145–152

    CAS  Article  Google Scholar 

  9. 9.

    So H, Park R, Oh H, Pae H (1999) J Ethnopharmacol 68:209–217

    CAS  Article  Google Scholar 

  10. 10.

    Cohen HJ, Newburger PE, Chovaniec ME, Whitin JC, Simons ER (1981) Blood 58:975–982

    CAS  Google Scholar 

  11. 11.

    Suzuki K, Yamaguchi T, Oshizawa T, Yamamoto Y, Nishimaki-Mogami T, Hayakawa T, Takahashi A (1995) Biochim Biophys Acta 1266:261–267

    Article  Google Scholar 

  12. 12.

    Meany DL, Thompson L, Arriaga EA (2007) Anal Chem 79:4588–4594

    CAS  Article  Google Scholar 

  13. 13.

    Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J (2014) Biochim Biophys Acta - Gen Subj 1840:739–744

    CAS  Article  Google Scholar 

  14. 14.

    Xu X, Thompson LDV, Navratil M, Arriaga EA (2010) Anal Chem 82:4570–4576

    CAS  Article  Google Scholar 

  15. 15.

    Grellet Bournonville CF, Díaz-Ricci JC (2011) Phytochem Anal 22:268–271

    CAS  Article  Google Scholar 

  16. 16.

    Lvovich V, Scheeline A (1997) Anal Chem 69:454–462

    CAS  Article  Google Scholar 

  17. 17.

    Flamm H, Kieninger J, Weltin A, Urban GA (2015) Biosens Bioelectron 65:354–359

    CAS  Article  Google Scholar 

  18. 18.

    Wilson RCK, Phuong DT, Chainani E, Scheeline A (2011) J Electroanal Chem 662:100–104

    CAS  Article  Google Scholar 

  19. 19.

    Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P (2007) Nat Protoc 2:2295–2301

    CAS  Article  Google Scholar 

  20. 20.

    Robinson KM, Janes MS, Beckman JS (2008) Nat Protoc 3:941–947

    CAS  Article  Google Scholar 

  21. 21.

    Zielonka J, Kalyanaraman B (2010) Free Radic Biol Med 48:983–1001

    CAS  Article  Google Scholar 

  22. 22.

    Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B (2003) Free Radic Biol Med 34:1359–1368

    CAS  Article  Google Scholar 

  23. 23.

    Gomes A, Fernandes E, Lima JLFC (2005) J Biochem Biophys Methods 65:45–80

    CAS  Article  Google Scholar 

  24. 24.

    Gao JJ, Xu KH, Tang B, Yin LL, Yang GW, An LG (2007) FEBS J 274:1725–1733

    CAS  Article  Google Scholar 

  25. 25.

    Liu X, Li Q, Gong X, Li H, Chen Z, Tong L, Tang B (2009) Electrophoresis 30:1077–1083

    CAS  Article  Google Scholar 

  26. 26.

    Michalski R, Michalowski B, Sikora A, Zielonka J, Kalyanaraman B (2014) Free Radic Biol Med 67:278–284

    CAS  Article  Google Scholar 

  27. 27.

    Mainz ER, Gunasekara DB, Caruso G, Jensen DT, Hulvey MK, da Silva JA F, Metto EC, Culbertson AH, Culbertson CT, Lunte SM (2012) Anal Methods 4:414–420

    CAS  Article  Google Scholar 

  28. 28.

    Gunasekara DB, Siegel JM, Caruso G, Hulvey MK, Lunte SM (2014) Analyst 139:3265–3273

    CAS  Article  Google Scholar 

  29. 29.

    Chen J, Rogers SC, Kavdia M (2014) Ann Biomed Eng 41:327–337

    Article  Google Scholar 

  30. 30.

    Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2008) Nat Protoc 3:8–21

    CAS  Article  Google Scholar 

  31. 31.

    Zielonka J, Zhao H, Xu Y, Kalyanaraman B (2005) Free Radic Biol Med 39:853–863

    CAS  Article  Google Scholar 

  32. 32.

    Singh RJ, Hogg N, Joseph J, Konorev E, Kalyanaraman B (1999) Arch Biochem Biophys 361:331–339

    CAS  Article  Google Scholar 

  33. 33.

    Hulvey MK, Frankenfeld CN, Lunte SM (2010) Anal Chem 82:1608–1611

    CAS  Article  Google Scholar 

  34. 34.

    Peng T, Yang D (2010) HKGreen-3: Org Lett 12:4932–4935

    CAS  Google Scholar 

  35. 35.

    Peng T, Wong N-K, Chen X, Chan Y-K, Ho DH-H, Sun Z, Hu JJ, Shen J, El-Nezami H, Yang D (2014) J Am Chem Soc 136:11728–11734

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support from National Science Foundation (CHE-1411993), National Institutes of Health (R01NS042929 and COBRE P20GM103638), Fundação de Amparo à Pesquisa do Estado de Sāo Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and National Institute of Science and Technology on Bioanalysis (INCTBio – Brazil). R.P.S.C. received support from the CNPq scholarship through the Science Without Borders program. J.M.S. was supported by a Madison and Lila Self Graduate Fellowship. We would also like to thank Ryan Grigsby for help with microchip fabrication and Nancy Harmony for editorial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susan M. Lunte.

Additional information

Published in the topical collection Capillary Electrophoresis of Biomolecules with guest editor Lisa Holland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Campos, R.P.S., Siegel, J.M., Fresta, C.G. et al. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence. Anal Bioanal Chem 407, 7003–7012 (2015). https://doi.org/10.1007/s00216-015-8865-1

Download citation

Keywords

  • Bioanalytical methods
  • Fluorescence
  • Microchip electrophoresis
  • Superoxide