Analytical and Bioanalytical Chemistry

, Volume 407, Issue 25, pp 7537–7562 | Cite as

A critical review of recent progress in analytical laser-induced breakdown spectroscopy

  • Gábor GalbácsEmail author


Laser-induced breakdown spectroscopy (LIBS) has become an established analytical atomic spectrometry technique and is valued for its very compelling set of advantageous analytical and technical characteristics. It is a rapid, versatile, non-contact technique, which is capable of providing qualitative and quantitative analytical information for practically any sample, in a virtually non-destructive way, without any substantial sample preparation. The instrumentation is simple, robust, compact, and even enables remote analysis. This review attempts to give a critical overview of the diverse progress of the field, focusing on the results of the last five years. The advancement of LIBS instrumentation and data evaluation is discussed in detail and selected results of some prominent applications are also described.


Laser-induced breakdown spectroscopy Laser-induced plasma spectroscopy Laser-induced plasma Instrumentation Data evaluation Applications 


  1. 1.
    Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, Omenetto N (2004) Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, a future super star. J Anal At Spectrom 19:1061–1083CrossRefGoogle Scholar
  2. 2.
    Randall DW, Hayes RT, Wong PA (2013) A simple laser induced breakdown spectroscopy (LIBS) system for use at multiple levels in the undergraduate chemistry curriculum. J Chem Educ 90:456–462CrossRefGoogle Scholar
  3. 3.
    Cremers LJ, Radziemski DA (2006) Handbook of laser-induced breakdown spectroscopy. WileyGoogle Scholar
  4. 4.
    Miziolek AW, Palleschi V, Schechter I (eds) (2006) Laser-induced breakdown spectroscopy: fundamentals and applications. Cambridge University PressGoogle Scholar
  5. 5.
    Fortes FJ, Moros J, Lucena P, Cabalin LM, Laserna JJ (2013) Laser-induced breakdown spectroscopy. Anal Chem 85:640–669CrossRefGoogle Scholar
  6. 6.
    Hahn DW, Omenetto N (2010) Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still challenging issues within the analytical plasma community. Appl Spectrosc 64:335A–366ACrossRefGoogle Scholar
  7. 7.
    Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419CrossRefGoogle Scholar
  8. 8.
    Musazzi S, Perini U (eds) (2014) Laser-induced breakdown spectroscopy: theory and applications. Series in Optical Sciences 182, SpringerGoogle Scholar
  9. 9.
    Cabalin LM, Laserna JJ (1998) Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim Acta B 53:723–730CrossRefGoogle Scholar
  10. 10.
    Cremers DA, Multari RA, Knight AK (2011) Laser-induced breakdown spectroscopy. In: Meyers RA (ed) Encyclopedia of analytical chemistry. WileyGoogle Scholar
  11. 11.
    Mao X, Russo RE (1997) Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles. Appl Phys A 64:1–6CrossRefGoogle Scholar
  12. 12.
    Koch J, Günther D (2011) Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 65:155–162CrossRefGoogle Scholar
  13. 13.
    Gill RK, Knorr F, Smith ZJ, Kahraman M, Madsen D, Larsen DS, Wachsmann-Hogiu S (2014) Characterization of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) and applications for biological samples. Appl Spectrosc 68:949–954CrossRefGoogle Scholar
  14. 14.
    Almaviva S, Fantoni R, Caneve L, Colao F, Fornarini L, Santagata A, Teghil R (2014) Use of ns and fs pulse excitation in laser-induced breakdown spectroscopy to improve its analytical performances: a case study on quaternary bronze alloys. Spectrochim Acta B 99:185–192CrossRefGoogle Scholar
  15. 15.
    Lu Y, Zorba V, Mao X, Zheng R, Russo RE (2013) UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis. J Anal At Spectrom 28:743–748CrossRefGoogle Scholar
  16. 16.
    Harilal SS, Freeman JR, Diwakar P, Hassanein A (2013) Comparison of nanosecond and femtosecond LIBS, CLEO: science and innovation, Technical Digest, Paper CTu2H.8, doi:  10.1364/CLEO_SI.2013.CTu2H.8
  17. 17.
    Zuclich JA, Lund DJ, Stuck BE (2007) Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: proposed revisions to MPES. Health Phys 92:15–23CrossRefGoogle Scholar
  18. 18.
    Gornushkin IB, Amponsah-Manager K, Smith BW, Omenetto N, Winefordner JD (2004) Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation. Appl Spectrosc 58:762–769CrossRefGoogle Scholar
  19. 19.
    Freedman A, Iannarilli FJ Jr, Wormhoudt JC (2005) Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy. Spectrochim Acta B 60:1076–1082CrossRefGoogle Scholar
  20. 20.
    Huang H, Yang LM, Liu J (2012) Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser. Appl Opt 51:8669–8676CrossRefGoogle Scholar
  21. 21.
    Gravel JFY, Doucet FR, Bouchard P, Sabsabi M (2011) Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy. J Anal At Spectrom 26:1354–1361CrossRefGoogle Scholar
  22. 22.
    Mueller M, Gornushkin IB, Florek S, Mory D, Panne U (2007) Approach to detection in laser-induced breakdown spectroscopy. Anal Chem 79:4419–4426CrossRefGoogle Scholar
  23. 23.
    Sabsabi M, Heon R, St- Onge L (2005) Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis. Spectrochim Acta B 60:1211–1216CrossRefGoogle Scholar
  24. 24.
    Effenberger AJ, Scott JR (2012) Practical high-resolution detection method for laser-induced breakdown spectroscopy. Appl Opt 51:B165–B170CrossRefGoogle Scholar
  25. 25.
    Melikechi N, Mezzacappa A, Cousin A, Lanza NL, Lasue J, Clegg SM et al (2014) Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra. Spectrochim Acta B 96:51–60CrossRefGoogle Scholar
  26. 26.
    Han ZY, Pan CY, An N, Du XW, Yu YS, Du LL, Wang SB, Wang QP (2015) The auto-focusing remote laser-induced breakdown spectroscopy system. Spectrosc Spectral Anal 35:304–308Google Scholar
  27. 27.
    Banerjee SP, Chen Z, Fedosejevs R (2014) High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy. Opt Lasers Eng 68:1–6CrossRefGoogle Scholar
  28. 28.
    Zorba V, Mao X, Russo RE (2011) Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis. Spectrochim Acta B 66:189–192CrossRefGoogle Scholar
  29. 29.
    Zeng Q, Guo L, Li X, He C, Shen M, Li K, Duan J, Zeng X, Lu Y (2015) Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron. J Anal At Spectrom 30:403–409CrossRefGoogle Scholar
  30. 30.
    Saeki M, Iwanade A, Ito C, Wakaida I, Thornton B, Sakka T, Ohba H (2014) Development of a fiber-coupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core. J Nucl Sci Technol 51:930–938CrossRefGoogle Scholar
  31. 31.
    Guirado S, Fortes FJ, Lazic V, Laserna JJ (2012) Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea. Spectrochim Acta B 74–75:137–143CrossRefGoogle Scholar
  32. 32.
    Abdelhamid M, Fortes FJ, Harith MA, Laserna JJ (2011) Analysis of explosive residues in human fingerprints using optical catapulting–laser-induced breakdown spectroscopy. J Anal At Spectrom 26:1445–1450CrossRefGoogle Scholar
  33. 33.
    Fortes FJ, Fernandez-Bravo A, Laserna JJ (2014) Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim Acta B 100:78–85CrossRefGoogle Scholar
  34. 34.
    Lazic V, Jovicevic S (2014) Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim Acta B 101:288–311CrossRefGoogle Scholar
  35. 35.
    Aras N, Yesiller SU, Ates DA, Yalcin S (2012) Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy. Spectrochim Acta B 74–75:87–94CrossRefGoogle Scholar
  36. 36.
    Cheri MS, Tavassoli SH (2011) Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy. Appl Opt 50:1227–1233CrossRefGoogle Scholar
  37. 37.
    Groh S, Diwakar PK, Garcia CC, Murtazin A, Hahn DW, Niemax K (2010) 100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes. Anal Chem 82:2568–2573CrossRefGoogle Scholar
  38. 38.
    Yu X, Li Y, Gu X, Bao J, Yang H, Sun L (2014) Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review. Environ Monit Assess 186:8969–8980CrossRefGoogle Scholar
  39. 39.
    Al-Adel FF, Dastageer MA, Gasmi K, Gondal MA (2013) Optimization of a laser induced breakdown spectroscopy method for the analysis of liquid samples. J Appl Spectrosc 80:767–770CrossRefGoogle Scholar
  40. 40.
    Metzinger A, Kovács‐Széles É, Almási I, Galbács G (2014) An assessment of the potential of laser induced breakdown spectrometry for the analysis of cesium in liquid samples of biological origin. Appl Spectrosc 68:789–793CrossRefGoogle Scholar
  41. 41.
    Sarkar A, Aggarwal SK, Sasibhusan K, Alamelu D (2010) Determination of sub-ppm levels of boron in ground water samples by laser induced breakdown spectroscopy. Microchim Acta 168:65–69CrossRefGoogle Scholar
  42. 42.
    Lee Y, Oh SW, Han SH (2012) Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the subparts per million level in water. Appl Spectrosc 66:1385–1396CrossRefGoogle Scholar
  43. 43.
    Sawaf S, Tawfik W (2014) Analysis of heavy elements in water with high sensitivity using laser induced breakdown spectroscopy. Optoelectron Adv Mater 8:414–417Google Scholar
  44. 44.
    Aguirre MA, Legnaioli S, Almodóvar F, Hidalgo M, Palleschi V, Canals A (2013) Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction. Spectrochim Acta B 79–80:88–93CrossRefGoogle Scholar
  45. 45.
    Aguirre MA, Nikolova H, Hidalgo M, Canals A (2015) Hyphenation of single-drop microextraction with laser-induced breakdown spectrometry for trace analysis in liquid samples: a viability study. Anal Methods 7:877–883CrossRefGoogle Scholar
  46. 46.
    Aguirre MA, Selva EJ, Hidalgo M, Canals A (2015) Dispersive liquid-liquid microextraction for metals enrichment: a useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis. Talanta 131:348–353CrossRefGoogle Scholar
  47. 47.
    de Jesus AMD, Angel Aguirre M, Hidalgo M, Canals A, Pereira-Filho ER (2014) The determination of V and Mo by dispersive liquid-liquid microextraction (DLLME) combined with laser-induced breakdown spectroscopy (LIBS). J Anal At Spectrom 29:1813–1818CrossRefGoogle Scholar
  48. 48.
    Zhao F, Chen ZM, Zhang FP, Li RH, Zhou JY (2010) Ultra-sensitive detection of heavy metal ions in tap water by laser-induced breakdown spectroscopy with the assistance of electrical-deposition. Anal Methods 2:408–414CrossRefGoogle Scholar
  49. 49.
    Dockery CR, Pender JE, Goode SR (2010) Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes. Appl Spectrosc 59:252–257CrossRefGoogle Scholar
  50. 50.
    Zhang X, Deguchi Y, Wang Z, Yana J, Liu J (2014) Sensitive detection of iodine by low pressure and short pulse laser-induced breakdown spectroscopy (LIBS). J Anal At Spectrom 29:1082–1089CrossRefGoogle Scholar
  51. 51.
    Dikshit V, Yueh FY, Singh JP, McIntyre DL, Jain JC, Melikechi N (2012) Laser induced breakdown spectroscopy: A potential tool for atmospheric carbon dioxide measurement. Spectrochim Acta B 68:65–70CrossRefGoogle Scholar
  52. 52.
    Hahn DW (2009) Laser-induced breakdown spectroscopy for analysis of aerosol particles: the path toward quantitative analysis. Spectroscopy 24:26–33Google Scholar
  53. 53.
    Diwakar K, Kulkarni P, Birch ME (2012) New approach for near-real-time measurement of elemental composition of aerosols using laser induced breakdown spectroscopy. Aerosol Sci Technol 46:316–332CrossRefGoogle Scholar
  54. 54.
    Babushok V, Delucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2006) Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B 61:999–1014CrossRefGoogle Scholar
  55. 55.
    Scaffidi J, Angel SM, Cremers DA (2006) Emission enhancement mechanisms in dual-pulse laser-induced breakdown spectroscopy. Anal Chem 78:24–32CrossRefGoogle Scholar
  56. 56.
    Yang G, Lin Q, Ding Y, Tian D, Duan Y (2015) Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement. Sci Rep 5:7625CrossRefGoogle Scholar
  57. 57.
    Coons RW, Harilal SS, Hassan SM, Hassanein A (2012) The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy. Appl Phys B 107:873–880CrossRefGoogle Scholar
  58. 58.
    Jedlinszki N, Galbacs G (2011) An evaluation of the analytical performance of collinear multi-pulse laser induced breakdown spectroscopy. Microchem J 97:255–263CrossRefGoogle Scholar
  59. 59.
    Tognoni E, Cristoforetti G (2014) Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment. J Anal At Spectrom 29:1318–1338CrossRefGoogle Scholar
  60. 60.
    Zhang K, Jiang L, Li X, Shi X, Yu D, Qu L, Lu Y (2014) Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons. J Phys D 47:435105CrossRefGoogle Scholar
  61. 61.
    Galbács G, Budavári V, Geretovszky ZS (2005) Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer. J Anal At Spectrom 20:974–980CrossRefGoogle Scholar
  62. 62.
    Galbács G, Jedlinszki N, Herrera K, Omenetto N, Smith BW, Winefordner JD (2010) A study of ablation, spatial, and temporal characteristics of laser-induced plasmas generated by multiple collinear pulses. Appl Spectrosc 64:161–172CrossRefGoogle Scholar
  63. 63.
    Galbács G, Jedlinszki N, Cseh G, Galbács Z, Túri L (2008) Accurate quantitative analysis of gold alloys using multi-pulse laser induced breakdown spectroscopy and a correlation-based calibration method. Spectrochim Acta B 63:591–597CrossRefGoogle Scholar
  64. 64.
    Galbács G, Jedlinszki N, Metzinger A (2013) Analysis and discrimination of soldering tin samples by collinear multi-pulse laser induced breakdown spectrometry, supported by inductively coupled plasma optical emission and mass spectrometry. Microchem J 107:17–24CrossRefGoogle Scholar
  65. 65.
    Hoechse M, Gornushkin I, Merk S, Panne U (2011) Assessment of suitability of diode pumped solid state lasers for laser induced breakdown and Raman spectroscopy. J Anal At Spectrom 26:414–424CrossRefGoogle Scholar
  66. 66.
    Guirado S, Fortes FJ, Cabelin LM, Laserna JJ (2014) Effect of pulse duration in multi-pulse excitation of silicon in laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 68:1060–1066CrossRefGoogle Scholar
  67. 67.
    Effenberger AJ Jr, Scott JR (2010) Effect of Atmospheric Conditions on LIBS spectra (review). Sensors 10:4907–4925CrossRefGoogle Scholar
  68. 68.
    Son JG, Choi SC, Oh MK, Kang H, Suk H, Lee Y (2010) Application of pulsed buffer gas jets for the signal enhancement of laser-induced breakdown spectroscopy. Appl Spectrosc 64:1289–1297CrossRefGoogle Scholar
  69. 69.
    Gornushkin IB, Stevenson CL, Galbács G, Smith BW, Winefordner JD (2003) Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres. Appl Spectrosc 57:1442–1450CrossRefGoogle Scholar
  70. 70.
    Liu Y, Baudelet M, Richardson M (2010) Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics. J Anal At Spectrom 25:1316–1323CrossRefGoogle Scholar
  71. 71.
    Liu Y, Bousquet B, Baudelet M, Richardson M (2012) Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy. Spectrochim Acta B 73:89–92CrossRefGoogle Scholar
  72. 72.
    Tampo M, Miyabe M, Akaoka K, Oba M, Ohba H, Maruyama Y, Ikuo W (2014) Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling. J Anal At Spectrom 29:886–892CrossRefGoogle Scholar
  73. 73.
    Yeates P, Kennedy E (2010) Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces. J Appl Phys 108:093306CrossRefGoogle Scholar
  74. 74.
    Yin H, Hou Z, Yuan T, Wang Z, Ni W, Li Z (2015) Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability. J Anal At Spectrom 30:922–928CrossRefGoogle Scholar
  75. 75.
    Guo L, Li C, Hu W, Zhou Y, Zhang B, Cai Z, Zeng X, Lu Y (2011) Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy. Appl Phys Lett 98:131501CrossRefGoogle Scholar
  76. 76.
    Li C, Guo L, He X, Hao Z, Li X, Shen M, Zeng X, Lu Y (2014) Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement. J Anal At Spectrom 29:638–643CrossRefGoogle Scholar
  77. 77.
    Hao ZQ, Guo LB, Li CM, Shen M, Zhou XH, Li XY, Lu YF, Zeng XY (2014) Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J Anal At Spectrom 29:2309–2314CrossRefGoogle Scholar
  78. 78.
    Hoehse M, Mory D, Florek S, Weritz F, Gornushkin I, Panne U (2009) A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim Acta B 64:1219–1227CrossRefGoogle Scholar
  79. 79.
    Lin Q, Niu G, Wang Q, Yu Q, Duan Y (2013) Combined laser-induced breakdown with Raman spectroscopy: historical technology development and recent applications. Appl Spectrosc Rev 48:487–508CrossRefGoogle Scholar
  80. 80.
    Moros J, Laserna JJ (2015) Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies. Talanta 134:627–639CrossRefGoogle Scholar
  81. 81.
    Bicchieri M, Nardone M, Russo P, Sodo A, Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2011) Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy. Spectrochim Acta B 56:915–922CrossRefGoogle Scholar
  82. 82.
    Osticioli I, Mendes NF, Porcinai S, Cagnini A, Castellucci E (2009) Spectroscopic analysis of works of art using a single LIBS and pulsed Raman setup. Anal Bioanal Chem 394:1033–1041CrossRefGoogle Scholar
  83. 83.
    Moros J, Lorenzo JA, Lucena P, Tobaria LM, Laserna JJ (2010) Simultaneous Raman spectroscopy − laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal Chem 82:1389–1400CrossRefGoogle Scholar
  84. 84.
    Moros J, Lorenzo JA, Laserna JJ (2011) Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Anal Bioanal Chem 400:3353–3365CrossRefGoogle Scholar
  85. 85.
    Matroodi F, Tavassoli SH (2015) Experimental investigation on concurrent laser-induced breakdown spectroscopy Raman spectroscopy. Appl Opt 54:400–407CrossRefGoogle Scholar
  86. 86.
    Sharma SK, Misra AK, Lucey PG, Lentz RCF (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468–476CrossRefGoogle Scholar
  87. 87.
    Clegg SM, Wiens R, Misra AK, Sharma SK, Lambert J, Bender S, Newell R, Nowak-Lovato K, Smrekar S, Dyar MD, Maurice S (2014) Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy. Appl Spectrosc 68:925–936CrossRefGoogle Scholar
  88. 88.
    Subedi K, Trejos T, Almirall J (2015) Forensic analysis of printing inks using tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 103–104:76–83CrossRefGoogle Scholar
  89. 89.
    Chirinos JR, Oropeza DD, Gonzalez JJ, Hou H, Morey M, Zorba V, Russo RE (2014) Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS. J Anal At Spectrom 29:1292–1298CrossRefGoogle Scholar
  90. 90.
    Glaus R, Hahn DW (2014) Double-pulse laser ablation coupled to laser-induced breakdown spectroscopy. Spectrochim Acta B 98:48–53CrossRefGoogle Scholar
  91. 91.
    Aras N, Yalcın S (2014) Rapid identification of phosphorus containing proteins in electrophoresis gel spots by laser-induced breakdown spectroscopy. J Anal At Spectrom 29:545–552CrossRefGoogle Scholar
  92. 92.
    Yesiller SU, Yalcin S (2013) Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples. Anal Chim Acta 770:7–17CrossRefGoogle Scholar
  93. 93.
    Simeonsson JB, Williamson LJ (2011) Characterization of laser induced breakdown plasmas used for measurements of arsenic, antimony and selenium hydrides. Spectrochim Acta B 66:754–760CrossRefGoogle Scholar
  94. 94.
    Unal S, Yalcin S (2010) Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: determination of tin in aqueous environments. Spectrochim Acta B 65:750–757CrossRefGoogle Scholar
  95. 95.
    Kaszewska EA, Sylwestrzak M, Marczak J, Skrzeczanowski W, Iwanicka M, Szmit-Naud E, Anglos D, Targowski P (2013) Depth-resolved multilayer pigment identification in paintings: combined use of laser-induced breakdown spectroscopy (LIBS) and optical coherence tomography (OCT). Appl Spectrosc 67:960–972CrossRefGoogle Scholar
  96. 96.
    Labutin TA, Zaytsev SM, Popov AM, Seliverstova IV, Bozhenko SE, Zorov NB (2013) Comparison of the thermodynamic and correlation criteria for internal standard selection in laser-induced breakdown spectrometry. Spectrochim Acta B 87:57–64CrossRefGoogle Scholar
  97. 97.
    Zorov NB, Gorbatenko AA, Labutin TA, Popov AM (2010) A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction. Spectrochim Acta B 65:642–657CrossRefGoogle Scholar
  98. 98.
    Feng J, Wang Z, Li Z, Ni W (2010) Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim Acta B 65:549–556CrossRefGoogle Scholar
  99. 99.
    Hou Z, Wang Z, Lui SL, Yuan T, Li L, Li Z, Ni W (2013) Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm. J Anal At Spectrom 28:107–113CrossRefGoogle Scholar
  100. 100.
    Wang Z, Li L, West L, Li Z, Ni W (2012) A spectrum standardization approach for laser-induced breakdown spectroscopy measurements. Spectrochim Acta B 68:58–64CrossRefGoogle Scholar
  101. 101.
    Li L, Wang Z, Yuan T, Hou Z, Li Z, Ni W (2011) A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements. J Anal At Spectrom 26:2274–2280CrossRefGoogle Scholar
  102. 102.
    Li X, Wang Z, Lui SL, Fu Y, Li Z, Liu J, Ni W (2013) A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements. Spectrochim Acta B 88:180–185CrossRefGoogle Scholar
  103. 103.
    Yaroshchyk P, Eberhardt JE (2014) Automatic correction of continuum background in laser-induced breakdown spectroscopy using a model-free algorithm. Spectrochim Acta B 99:138–149CrossRefGoogle Scholar
  104. 104.
    Schlenke J, Hildebrand L, Moros J, Laserna JJ (2012) Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform. Anal Chim Acta 754:8–19CrossRefGoogle Scholar
  105. 105.
    Aono Y, Ando K, Hattori N (2012) Rapid identification of CCA-treated wood using laserinduced breakdown spectroscopy. J Wood Sci 58:363–368CrossRefGoogle Scholar
  106. 106.
    Oztoprak BG, Gonzalez J, Yoo J, Gulecen T, Mutlu N, Russo RE, Gundogdu O, Demir A (2012) Analyis and classification of heterogeneous kidney stones using laser induced breakdown spectroscopy 66:1353–1361Google Scholar
  107. 107.
    Amato G, Cristoforetti G, Legnaioli S, Lorenzetti G, Palleschi V, Sorrentino F, Tognoni E (2010) TI Progress towards an unassisted element identification from Laser Induced breakdown spectra with automatic ranking techniques inspired by text retrieval. Spectrochim Acta B 65:664–670CrossRefGoogle Scholar
  108. 108.
    Andrade-Garda JM (2013) Basic chemometric techniques in atomic spectroscopy, 2nd edition, RSC Analytical Spectroscopy Monographs No. 13Google Scholar
  109. 109.
    El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta B 101:171–182CrossRefGoogle Scholar
  110. 110.
    Aquino FWB, Pereira-Filho ER (2015) Analysis of the polymeric fractions of scrap from mobile phones using laser-induced breakdown spectroscopy: chemometric applications for better data interpretation. Talanta 134:65–73CrossRefGoogle Scholar
  111. 111.
    Pokrajac D, Lazarevic A, Kecman V, Marcano A, Markushin Y, Vance T, Reljin N, McDaniel S, Melikechi N (2014) Automatic classification of laser-induced breakdown spectroscopy (LIBS) data of protein biomarker solutions. Appl Spectrosc 68:1067–1075CrossRefGoogle Scholar
  112. 112.
    Putnam RA, Mohaidat QI, Daabous A, Rehse SJ (2013) A comparison of multivariate analysis techniques and variable selection strategies in a laser-induced breakdown spectroscopy bacterial classification. Spectrochim Acta B 87:161–167CrossRefGoogle Scholar
  113. 113.
    Moros J, Serrano J, Sanchez C, Macias J, Laserna JJ (2012) New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues. J Anal At Spectrom 27:2111–2122CrossRefGoogle Scholar
  114. 114.
    Shaltout AA, Abdel-Aal MS, Mostafa NY (2011) The validity of commercial LIBS for quantitative analysis of brass alloy — comparison of WDXRF and AAS. J Appl Spectrosc 78:594–600CrossRefGoogle Scholar
  115. 115.
    Ctvrtnickova T, Mateo MP, Yañez A, Nicolas G (2010) Laser induced breakdown spectroscopy application for ash characterisation for a coal fired power plant. Spectrochim Acta B 65:734–737CrossRefGoogle Scholar
  116. 116.
    Gomes MS, de Carvalho GGA, Santos D Jr, Krug FJ (2013) A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: a case study with pellets of sugar cane leaves. Spectrochim Acta B 86:137–141Google Scholar
  117. 117.
    Arafat A, Na’esb M, Kantarelou V, Haddad N, Giakoumaki A, Argyropoulos V, Anglos D, Karydas A-G (2013) Combined in situ micro-XRF, LIBS and SEM-EDS analysis of base metal and corrosion products for Islamic copper alloyed artefacts from Umm Qais museum, Jordan. J Cult Herit 14:261–269CrossRefGoogle Scholar
  118. 118.
    Alberghina MF, Barraco R, Brai M, Schillaci T, Tranchina L (2011) Comparison of LIBS and μ-XRF measurements on bronze alloys for monitoring plasma effects. J Phys Conf Ser 275:012017CrossRefGoogle Scholar
  119. 119.
    Meissner K, Lippert K, Wokaun A, Guenther D (2004) Analysis of trace metals in comparison of laser-induced breakdown spectroscopy with LA-ICP-MS. Thin Solid Films 453–454:316–322CrossRefGoogle Scholar
  120. 120.
    Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E (1999) New procedure for quantitative elemental analysis by LIPS. Appl Spectrosc 53:960–964CrossRefGoogle Scholar
  121. 121.
    Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V (2010) Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim Acta B 65:1–14CrossRefGoogle Scholar
  122. 122.
    Gornushkin IB, Panne U (2010) Radiative models of laser-induced plasma and pump probe diagnostics relevant to laser-induced breakdown spectroscopy. Spectrochim Acta B 65:345–359CrossRefGoogle Scholar
  123. 123.
    Gornushkin IB, Kazakov AY, Omenetto N, Smith BW, Winefordner JD (2005) Experimental verification of a radiative model of laser induced plasma expansion into vacuum. Spectrochim Acta B 60:215–230CrossRefGoogle Scholar
  124. 124.
    Herrera KK, Tognoni E, Gornushkin IB, Omenetto N, Smith BW, Winefordner JD (2009) Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. J Anal At Spectrom 24:426–438CrossRefGoogle Scholar
  125. 125.
    El Haddad J, Villot-Kadri M, Ismaël A, Gallou G, Michel K, Bruyère D, Laperche V, Canioni L, Bousquet B (2013) Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy. Spectrochim Acta B 79–80:51–57CrossRefGoogle Scholar
  126. 126.
    Mukhono PM, Angeyo KH, Dehayem-Kamadjeu A, Kaduki KA (2013) Laser induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics. Spectrochim Acta B 87:81–85CrossRefGoogle Scholar
  127. 127.
    Li X, Wang Z, Fu Y, Li Z, Ni W (2014) A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy. Spectrochim Acta B 99:82–86CrossRefGoogle Scholar
  128. 128.
    Feng J, Wang Z, Li L, Li Z, Ni W (2013) A Nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy. Appl Spectrosc 67:291–300CrossRefGoogle Scholar
  129. 129.
    Aguilera JA, Aragon C, Madurga V, Manrique J (2009) Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy. Spectrochim Acta B 64:993CrossRefGoogle Scholar
  130. 130.
    Wiens RC, Maurice S, Lasue J, Forni O, Anderson RB, Clegg S et al (2013) Pre-flight calibration and initial data processing for the Chem Cam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim Acta B 82:1–27CrossRefGoogle Scholar
  131. 131.
    Anderson RB, Bell JF III, Wiens RC, Morris RV, Clegg SM (2012) Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy. Spectrochim Acta B 70:24–32CrossRefGoogle Scholar
  132. 132.
    Manzoor S, Moncayo S, Navarro-Villoslada F, Ayala JA, Izquierdo-Hornillos R, Manuel de Villena FJ, Caceres JO (2013) Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks. Talanta 121:65–70CrossRefGoogle Scholar
  133. 133.
    Mohaidat Q, Palchaudhuri S, Rehse SJ (2011) The effect of bacterial environmental and metabolic stresses on a LIBS-based identification of Escherichia coli and Streptococcus viridans. Appl Spectrosc 65:386–392CrossRefGoogle Scholar
  134. 134.
    Cisewski J, Snyder E, Hannig J, Oudejans L (2012) Support vector machine classification of suspect powders using laser-induced breakdown spectroscopy (LIBS) spectral data. J Chemom 26:143–149CrossRefGoogle Scholar
  135. 135.
    Khalil AA, Gondal MA, Shemis M, Khan IS (2015) Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy. Appl Opt 54:2123–2131CrossRefGoogle Scholar
  136. 136.
    Gazmeh M, Bahreini M, Tavassoli SH (2015) Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis. Appl Opt 54:123–131CrossRefGoogle Scholar
  137. 137.
    Grolmusova Z, Hornackova M, Plavcan J, Kopani M, Babal P, Veis P (2013) Laser induced breakdown spectroscopy of human liver samples with Wilson’s disease. Eur Phys J Appl Phys 63:20801CrossRefGoogle Scholar
  138. 138.
    Sancey L, Motto-Ros V, Busser B, Kotb S, Benoit JM, Piednoir A, Lux F, Tillement O, Panczer G, Yu J (2014) Laser spectrometry for multi-elemental imaging of biological tissues. Sci Rep 4(6065):1–7Google Scholar
  139. 139.
    El-Hussein A, Kassem AK, Ismail H, Harith MA (2010) Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies. Talanta 82:495–501CrossRefGoogle Scholar
  140. 140.
    Emara EM, Imam H, Hassan M, Elnaby SH (2013) Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair. Talanta 117:176–183CrossRefGoogle Scholar
  141. 141.
    Bahreini M, Ashrafkhani B, Tavassoli SH (2013) Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails. J Biomed Opt 18:107006CrossRefGoogle Scholar
  142. 142.
    Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194ra93CrossRefGoogle Scholar
  143. 143.
    Kanawade R, Mahari F, Klaempfl F, Rohde M, Knipfer C, Tangermann-Gerk K, Adler W, Schmidt M, Stelzle F (2015) Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems. J Biophotonics 8:153–161CrossRefGoogle Scholar
  144. 144.
    Mehari F, Rohde M, Knipfer C, Kanawade R, Klaempfl F, Adler W, Stelzle F, Schmidt M (2014) Laser induced breakdown spectroscopy for bone and cartilage differentiation - ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed Opt Exp 5:4013–4023CrossRefGoogle Scholar
  145. 145.
    Pořízka P, Prochazka D, Pilát Z, Krajcarová L, Kaiser J, Malina R, Novotný J, Zemánek P, Ježek J, Šerý M et al (2012) Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochim Acta B 74–75:169–176CrossRefGoogle Scholar
  146. 146.
    Kaiser J, Novotny K, Martin MZ, Hrdlicka A, Malina R, Hartl M, Adam V, Kizek R (2012) Trace elemental analysis by laser-induced breakdown spectroscopy—biological applications. Surf Sci Rep 67:233–243CrossRefGoogle Scholar
  147. 147.
    Rehse SJ, Salimnia H, Miziolek AW (2012) Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. J Med Eng Technol 36:77–89CrossRefGoogle Scholar
  148. 148.
    Ayyalasomayajula KK, Fang YY, Singh JP, McIntyre DL, Jain J (2012) Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples. Appl Opt 51:B149–B154CrossRefGoogle Scholar
  149. 149.
    Ferreira EC, Ferreira EJ, Villas-Boas PR, Senesi GS, Carvalho CM, Romano RA, Martin-Neto L, Milori BP, Marcondes D (2014) Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy. Spectrochim Acta B 99:76–81CrossRefGoogle Scholar
  150. 150.
    Bricklemyer RS, Brown DJ, Turk PJ, Clegg SM (2013) Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 67:1185–1199CrossRefGoogle Scholar
  151. 151.
    Diaz D, Hahn DW, Molinat A (2012) Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils. Appl Spectrosc 66:99–106CrossRefGoogle Scholar
  152. 152.
    Srungaram PK, Ayyalasomayajula KK, Yu-Yueh F, Singh JP (2013) Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils. Spectrochim Acta B 87:108–113CrossRefGoogle Scholar
  153. 153.
    Segnini A, Xavier AAP, Otaviani-Junior PL, Ferreira EC, Watanabe AM, Sperança MA, Nicolodelli G, Villas-Boas PR, Oliveira PPA, Milori DMBP (2014) Physical and chemical matrix effects in soil carbon quantification using laser-induced breakdown spectroscopy. Am J Anal Chem 5:722–729CrossRefGoogle Scholar
  154. 154.
    Hark RR, Remus JJ, East LJ, Harmon RS, Wise MA, Tansi BM, Shughrue KM, Dunsin KS, Liu C (2012) Geographical analysis of “conflict minerals” utilizing laser-induced breakdown spectroscopy. Spectrochim Acta B 74–75:131–136CrossRefGoogle Scholar
  155. 155.
    McMillan NJ, Rees S, Kochelek K, McManus C (2014) Geological applications of laser-induced breakdown spectroscopy. Geostand Geoanal Res 38:329–343CrossRefGoogle Scholar
  156. 156.
    Fortes FJ, Vadillo I, Stoll H, Jimenez-Sanchez M, Moreno A, Laserna JJ (2012) Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy. J Anal At Spectrom 27:868–873CrossRefGoogle Scholar
  157. 157.
    Roux CPM, Rakovsky J, Musset O, Monna F, Buoncristiani JF, Pellenard P, Thomazo C (2015) In situ laser induced breakdown spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland. Spectrochim Acta B 103:63–69CrossRefGoogle Scholar
  158. 158.
    Dell’Aglio M, De Giacomo A, Gaudiuso R, De Pascale O, Longo S (2014) Laser induced breakdown spectroscopy of meteorites as a probe of the early solar system. Spectrochim Acta B 101:68–75CrossRefGoogle Scholar
  159. 159.
    Hornackova M, Plavcan J, Rakovsky J, Porubcan V, Ozdin D, Veis P (2014) Calibration-free laser induced breakdown spectroscopy as an alternative method for found meteorite fragments analysis. Eur Phys J Appl Phys 66:10702CrossRefGoogle Scholar
  160. 160.
    Asgill ME, Brown MS, Frische K, Roquemore WM, Hahn DW (2010) Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes. Appl Opt 49:C110–C119CrossRefGoogle Scholar
  161. 161.
    Kwak J, Kim G, Kim YJ, Park K (2012) Determination of heavy metal distribution in PM10 during Asian dust and local pollution events using laser induced breakdown spectroscopy (LIBS). Aerosol Sci Technol 46:1079–1089CrossRefGoogle Scholar
  162. 162.
    Yu Y, Zhou W, Qian H, Su X, Ren K (2014) Simultaneous determination of trace lead and chromium in water using laser-induced breakdown spectroscopy and paper substrate. Plasma Sci Technol 16:683–687CrossRefGoogle Scholar
  163. 163.
    Haider AFMY, Ullah M, Khan ZH, Kabir F, Abedin KM (2014) Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption. Opt Laser Technol 56:299–303CrossRefGoogle Scholar
  164. 164.
    Harmon RS, Russo RE, Hark RR (2013) Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: a comprehensive review. Spectrochim Acta B 87:11–26CrossRefGoogle Scholar
  165. 165.
    Yuan T, Wang Z, Lui S, Fu Y, Li Z, Liu J, Ni W (2013) Coal property analysis using laser-induced breakdown spectroscopy. J Anal At Spectrom 28:1045–1053CrossRefGoogle Scholar
  166. 166.
    Zhang L, Hu Z, Yin W, Huang D, Ma W, Dong L, Wu H, Li Z, Xiao L, Jia S (2012) Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash. Front Phys 7:690–700CrossRefGoogle Scholar
  167. 167.
    Li X, Wang Z, Fu Y, Li Z, Liu J, Ni W (2014) Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 68:955–962CrossRefGoogle Scholar
  168. 168.
    Kim CK, Lee SH, In JH, Lee HJ, Jeong S (2013) Depth profiling analysis of CuIn1-xGaxSe2 absorber layer by laser induced breakdown spectroscopy in atmospheric conditions. Opt Express 21:A1018–A1027CrossRefGoogle Scholar
  169. 169.
    Kim CK, In JH, Lee SH, Jeong S (2013) Influence of laser wavelength on the laser induced breakdown spectroscopy measurement of thin CuIn1-xGaxSe2 solar cell films. Spectrochim Acta B 88:20–25CrossRefGoogle Scholar
  170. 170.
    Banerjee SP, Fedosejevs R (2014) Single shot depth sensitivity using femtosecond laser induced breakdown spectroscopy. Spectrochim Acta B 92:34–41CrossRefGoogle Scholar
  171. 171.
    Bilge G, Boyaci IH, Eseller KE, Tamer U, Cakir S (2015) Analysis of bakery products by laser-induced breakdown spectroscopy. Food Chem 181:186–190CrossRefGoogle Scholar
  172. 172.
    Li W, Huang L, Yao M, Liu M, Chen T (2014) Investigation of Pb in Gannan navel orange with contaminant in controlled conditions by laser-induced breakdown spectroscopy. J Appl Spectrosc 81:850–854CrossRefGoogle Scholar
  173. 173.
    Lei WQ, El Haddad J, Motto-Ros V, Gilon-Delepine N, Stankova A, Ma QL, Bai XS, Zheng LJ, Zeng HP, Yu J (2011) Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy. Anal Bioanal Chem 400:3303–3313CrossRefGoogle Scholar
  174. 174.
    Ma F, Dong D (2014) A measurement method on pesticide residues of apple surface based on laser-induced breakdown spectroscopy. Food Anal Methods 7:1858–1865CrossRefGoogle Scholar
  175. 175.
    Multari RA, Cremers DA, Dupre JAM, Gustafson JE (2013) Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem 61:8687–8694CrossRefGoogle Scholar
  176. 176.
    Lee SH, Hahn HT, Yoh JJ (2013) Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames. Spectrochim Acta B 88:63–68CrossRefGoogle Scholar
  177. 177.
    Kiefer J, Troeger JW, Li Z, Seeger T, Alden M, Leipertz A (2012) Laser-induced breakdown flame thermometry. Combust Flame 159:3576–3582CrossRefGoogle Scholar
  178. 178.
    Diwakar PK, Loper KH, Matiaske AM, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110–1119CrossRefGoogle Scholar
  179. 179.
    Amodeo T, Dutouquet C, Tenegal F, Guizard B, Maskrot H, Le Bihan O, Frejafon E (2008) On-line monitoring of composite nanoparticles synthesized in a pre-industrial laser pyrolysis reactor using laser-induced breakdown spectroscopy. Spectrochim Acta B 63:1183–1190CrossRefGoogle Scholar
  180. 180.
    Strauss N, Fricke-Begemann C, Noll R (2010) Size-resolved analysis of fine and ultrafine particulate matter by laser-induced breakdown spectroscopy. J Anal At Spectrom 25:867–874CrossRefGoogle Scholar
  181. 181.
    Zhang Y, Li S, Ren Y, Yao Q, Tse SD (2015) A new diagnostic for volume fraction measurement of metal-oxide nanoparticles in flames using phase-selective laser-induced breakdown spectroscopy. Proc Combust Inst 35:3681–3688CrossRefGoogle Scholar
  182. 182.
    Fedotova N, Kaegi R, Koch J, Günther D (2015) Influence of dispersion agents on particle size and concentration determined by laser-induced breakdown detection. Spectrochim Acta B 103:92–98CrossRefGoogle Scholar
  183. 183.
    Fedotova N, Gogos A, Kägi R, Koch J, Günther D (2015) Asymmetric flow field-flow fractionation (A4F) coupled to laser induced breakdown detection for nanoparticles and proteins detection, European Winter Plasma Conference 2015, Münster, Germany, Paper No. NP3B-OP04Google Scholar
  184. 184.
    Troester M, Lipp P, Sacher F, Brauch H-J, Hofmann T (2014) Laser-induced breakdown-detection for reliable online monitoring of membrane integrity. J Membr Sci 466:313–321CrossRefGoogle Scholar
  185. 185.
    Latkoczy C, Kaegi R, Fierz M, Ritzmann M, Guenther D, Boller M (2010) Development of a mobile fast-screening laser-induced breakdown detection (LIBD) system for field-based measurements of nanometre sized particles in aqueous solutions. J Environ Monit 12:1422–1429CrossRefGoogle Scholar
  186. 186.
    De Giacomo A, Gaudiuso R, Koral C, Dell’Aglio M, De Pascale O (2013) Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal Chem 85:10180–10187CrossRefGoogle Scholar
  187. 187.
    De Giacomo A, Gaudiuso R, Koral C, Dell’Aglio M, De Pascale O (2014) Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim Acta B 98:19–27CrossRefGoogle Scholar
  188. 188.
    Sancey L, Motto-Roos V, Kotb S, Wang X, Lux F, Panczer G, Yu J, Tillement O (2014) Laser-induced breakdown spectroscopy: a new approach for nanoparticle’s mapping and quantification in organ tissue. J Vis Exp 88, e51353Google Scholar
  189. 189.
    Motto-Ros V, Sancey L, Wang XC, Ma QL, Lux F, Bai XS, Panczer G, Tillement O, Yu J (2013) Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy. Spectrochim Acta B 87:168–174CrossRefGoogle Scholar
  190. 190.
    Borowik T, Przybylo M, Pala K, Otlewski J, Langner M (2011) Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with laser induced breakdown spectroscopy using a polymer-based gel matrix. Spectrochim Acta B 66:726–732CrossRefGoogle Scholar
  191. 191.
    Serrano J, Cabalin LM, Moros J, Laserna JJ (2014) Potential of laser-induced breakdown spectroscopy for discrimination of nano-sized carbon materials. Insights on the optical characterization of graphene. Spectrochim Acta B 97:105–112CrossRefGoogle Scholar
  192. 192.
    Sadek H, Simileanu M, Radvan R, Goumaa R (2012) Identification of porcelain pigments by laser induced breakdown spectroscopy. J Optoelectron Adv Mater 14:858–862Google Scholar
  193. 193.
    Palomar T, Oujja M, Garcia-Heras M, Villegas MA, Castillejo M (2013) Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses. Spectrochim Acta B 87:114–120CrossRefGoogle Scholar
  194. 194.
    Syvilay D, Texier A, Arles A, Gratuze B, Wilkie-Chancellier N, Martinez L, Serfaty S, Detalle V (2015) Trace element quantification of lead based roof sheets of historical monuments by laser induced breakdown spectroscopy. Spectrochim Acta B 103:34–42CrossRefGoogle Scholar
  195. 195.
    Vitkova G, Prokes L, Novotny K, Porizka P, Novotny J, Vsiansky D, Celko L, Kaiser J (2014) Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy. Spectrochim Acta B 101:191–199CrossRefGoogle Scholar
  196. 196.
    Kasem MA, Gonzalez JJ, Russo RE, Harith MA (2014) Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone. Spectrochim Acta B 101:26–31CrossRefGoogle Scholar
  197. 197.
    Kasem MA, Russo RE, Harith MA (2011) Influence of biological degradation and environmental effects on the interpretation of archeological bone samples with laser-induced breakdown spectroscopy. J Anal At Spectrom 26:1733–1739CrossRefGoogle Scholar
  198. 198.
    Kokkinaki O, Mihesan C, Velegrakis M, Anglos D (2013) Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials. J Mol Struct 1044:160–166CrossRefGoogle Scholar
  199. 199.
    Vitkova G, Novotny K, Prokes L, Hrdlicka A, Kaiser J, Novotny J, Malina R, Prochazka D (2012) Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks. Spectrochim Acta B 73:1–6CrossRefGoogle Scholar
  200. 200.
    Guirado S, Fortes FJ, Laserna JJ (2015) Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system. Talanta 137:182–188CrossRefGoogle Scholar
  201. 201.
    Fortes FJ, Guirado S, Metzinger A, Laserna JJ (2015) A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean. J Anal At Spectrom 30:1050–1056CrossRefGoogle Scholar
  202. 202.
    Spizzichino V, Fantoni R (2014) Laser induced breakdown spectroscopy in archeometry: a review of its application and future perspectives. Spectrochim Acta B 99:201–209CrossRefGoogle Scholar
  203. 203.
    Gottfried JL (2013) Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Appl Opt 52:B10–B19CrossRefGoogle Scholar
  204. 204.
    De Lucia FC, Gottfried JL Jr (2012) Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. Appl Opt 51:B83–B92CrossRefGoogle Scholar
  205. 205.
    Gaona I, Serrano J, Moros J, Laserna JJ (2014) Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy. Anal Chem 86:5045–5052CrossRefGoogle Scholar
  206. 206.
    Karasevich YK, Kulagin AZ, Skripkin AM, Khatyushin PA, Karpov YA (2010) Laser-induced breakdown method for code detection (identification) in explosion products of coded explosives. Inorg Mater 46:1487–1492CrossRefGoogle Scholar
  207. 207.
    Cremers DA, Beddingfield A, Smithwick R, Chinni RC, Jones CR, Beardsley B, Larry K (2012) Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer. Appl Spectrosc 66:250–261CrossRefGoogle Scholar
  208. 208.
    Doucet FR, Lithgow G, Kosierb R, Bouchard P, Sabsabi M (2011) Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics. J Anal At Spectrom 26:536–541CrossRefGoogle Scholar
  209. 209.
    Metzinger A, Rajkó R, Galbács G (2014) Discrimination of paper and print types based on their laser induced breakdown spectra. Spectrochim Acta B 94–95:48–57CrossRefGoogle Scholar
  210. 210.
    Kula A, Wietecha-Posluszny R, Pasionek K, Krol M, Wozniakiewicz M, Koscielniak P (2014) Application of laser induced breakdown spectroscopy to examination of writing inks for forensic purposes. Sci Justice 54:118–125CrossRefGoogle Scholar
  211. 211.
    Schenk E, Almirall JR (2010) Elemental analysis of cotton by laser-induced breakdown spectroscopy. Appl Opt 49:C153–C160CrossRefGoogle Scholar
  212. 212.
    Jantzi SC, Almirall JR (2014) Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens. Appl Spectrosc 68:963–974CrossRefGoogle Scholar
  213. 213.
    Jantzi SC, Almirall JR (2011) Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS). Anal Bioanal Chem 400:3341–3351CrossRefGoogle Scholar
  214. 214.
    Moncayo S, Manzoor S, Ugidos T, Navarro-Villoslada F, Caceres JO (2014) Discrimination of human bodies from bones and teeth remains by laser induced breakdown spectroscopy and neural networks. Spectrochim Acta B 101:21–25CrossRefGoogle Scholar
  215. 215.
    Marin-Roldan A, Manzoor S, Moncayo S, Navarro-Villoslada F, Izquierdo-Hornillos RC, Caceres JO (2013) Determination of the postmortem interval by laser induced breakdown spectroscopy using swine skeletal muscles. Spectrochim Acta B 88:186–191CrossRefGoogle Scholar
  216. 216.
    Bahreini M, Ashrafkhani B, Tavassoli SH (2014) Elemental analysis of fingernail of alcoholic and doping subjects by laser-induced breakdown spectroscopy. Appl Phys B Lasers Opt 114:439–447Google Scholar
  217. 217.
    Darbani SMR, Ghezelbash M, Majd AE, Soltanolkotabi M, Saghafifar H (2014) Temperature effect on the optical emission intensity in laser induced breakdown spectroscopy of super alloys. J Eur Opt Soc Rapid Publ 9:14058CrossRefGoogle Scholar
  218. 218.
    Lawrence-Snyder M, Scaffidi JP, Pearman WF, Gordon CM, Angel SM (2014) Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: dependence of emission intensity and inter-pulse delay on solution pressure. Spectrochim Acta B 99:172–178CrossRefGoogle Scholar
  219. 219.
    Goueguel C, McIntyre DL, Singh JP, Jain J, Karamalidis AK (2014) Laser-induced breakdown spectroscopy (LIBS) of a high-pressure CO2-water mixture: application to carbon sequestration. Appl Spectrosc 68:997–1003CrossRefGoogle Scholar
  220. 220.
    Jain J, Mcintyre D, Ayyalasomayajula K, Dikshit V, Goueguel C, Yu-Yueh F, Singh J (2014) Application of laser-induced breakdown spectroscopy in carbon sequestration research and development. Pramana J Phys 83:179–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations