Skip to main content
Log in

Multifunctional gold nanoparticles as signal transducers for fabrication of 1:2 molecular demultiplexer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A label-free and enzyme-free demultiplexer system for the fabrication of 1:2 molecular demultiplexer with luminol functionalized gold nanoparticles (Lum-AuNPs) as signal transducers was developed for the first time. The Lum-AuNPs had both chemiluminescence (CL) activity and surface plasmon resonance property. It was found that organothiols (RSH) could easily induce the aggregation of AuNPs via strong Au–S covalent interactions in the absence of hydrogen peroxide (H2O2), generating a red shift in the absorption band of AuNPs. However, the presence of H2O2 would readily oxidize RSH to disulfide (RS-SR), and the aggregation of Lum-AuNPs did not occur due to lack of the sulfhydryl group. Meanwhile, H2O2 could react with Lum-AuNPs, producing a strong CL emission owing to the enhancement effect of RSH on AuNPs-luminol-H2O2 CL system. Thus, RSH, H2O2, absorbance ratio, and CL intensity served as the signal input, address input, and two different signal outputs of the 1:2 molecular demultiplexer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13(7):455–468

    Article  CAS  Google Scholar 

  2. Domanskyi S, Privman V (2012) Design of digital response in enzyme-based bioanalytical systems for information processing applications. J Phys Chem B 116(46):13690–13695

    Article  CAS  Google Scholar 

  3. Li W, Yang Y, Yan H, Liu Y (2013) Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett 13(6):2980–2988

    Article  CAS  Google Scholar 

  4. Gil B, Kahan-Hanum M, Skirtenko N, Adar R, Shapiro E (2011) Detection of multiple disease indicators by an autonomous biomolecular computer. Nano Lett 11(7):2989–2996

    Article  CAS  Google Scholar 

  5. Hemphill J, Deiters A (2013) DNA Computation in mammalian cells: microRNA logic operations. J Am Chem Soc 135(28):10512–10518

    Article  CAS  Google Scholar 

  6. Silva A, Uchiyama S (2007) Molecular logic and computing. Nat Nanotechnol 2(7):399–410

    Article  Google Scholar 

  7. Du Y, Li B, Wang E (2012) “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 46(2):203–213

    Article  Google Scholar 

  8. Macyk W, Stochel G, Szaciłowski K (2007) Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with Iron (II) complexes: a comparative study. Chem Eur J 13(20):5676–5687

    Article  CAS  Google Scholar 

  9. Pu F, Liu Z, Ren J, Qu X (2013) Nucleic acid/mesoporous silica nanoparticle conjugates for keypad lock security operation. Chem Commun 49(23):2305–2307

    Article  CAS  Google Scholar 

  10. Zhou Z, Liu Y, Dong S (2013) DNA-templated Ag nanoclusters as signal transducer for label-free and resettable keypad lock. Chem Commun 49(30):3107–3109

    Article  CAS  Google Scholar 

  11. Niazov T, Baron R, Katz E, Lioubashevski O, Willne I (2006) Concatenated logic gates using four coupled biocatalysts operating in series. PNAS 103(46):17160–17163

    Article  CAS  Google Scholar 

  12. Erbas-Cakmak S, Bozdemir O, Cakmaka Y, Akkaya E (2013) Proof of principle for a molecular 1: 2 demultiplexer to function as an autonomously switching theranostic device. Chem Sci 4(2):858–862

    Article  CAS  Google Scholar 

  13. Arugula M, Bocharova V, Halámek J, Pita M, Katz E (2010) Enzyme-based multiplexer and demultiplexer. J Phys Chem B 114(15):5222–5226

    Article  CAS  Google Scholar 

  14. Orbach R, Remacle F, Levine R, Willner I (2013) DNAzyme-based 2: 1 and 4: 1 multiplexers and 1: 2 demultiplexer. Chem Sci 5(3):1074–1081

    Article  Google Scholar 

  15. Perez-Inestrosa E, Montenegro J, Collado D, Suau R (2008) A molecular 1: 2 demultiplexer. Chem Commun 9:1085–1087

    Article  Google Scholar 

  16. Yong K, Roy I, Swihart M, Prasad P (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672

    Article  CAS  Google Scholar 

  17. Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2012) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46(8):1783–1794

    Article  Google Scholar 

  18. Jiang Q, Wang Z, Ding B (2013) Programmed colorimetric logic devices based on DNA-gold nanoparticle interactions. Small 9(7):1016–1020

    Article  CAS  Google Scholar 

  19. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37(6):1153–1165

    Article  CAS  Google Scholar 

  20. Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X (2011) Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed 50(18):4103–4107

    Article  CAS  Google Scholar 

  21. Xu X, Zhang J, Yang F, Yang X (2011) Colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles. Chem Commun 47(33):9435–9437

    Article  CAS  Google Scholar 

  22. Wang S, Ge L, Yan M, Yu J, Song X, Ge S, Huang J (2013) 3D microfluidic origami electrochemiluminescence immunodevice for sensitive point-of-care testing of carcinoma antigen 125. Sensors Actuators B Chem 176:1–8

    Article  CAS  Google Scholar 

  23. García-Berríos E, Gao T, Theriot J, Woodka M, Brunschwig B, Lewis N (2011) Response and discrimination performance of arrays of organothiol-capped Au nanoparticle chemiresistive vapor sensors. J Phys Chem C 115(14):6208–6217

    Article  Google Scholar 

  24. Murray R (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688–2720

    Article  CAS  Google Scholar 

  25. Vangala K, Siriwardana K, Vasquez E, Xin Y, Pittman J, Walters K, Zhang D (2013) Simultaneous and sequential protein and organothiol interactions with gold nanoparticles. J Phys Chem C 117(3):1366–1374

    Article  CAS  Google Scholar 

  26. Chen H, Gao F, He R, Cui D (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315(1):158–163

    Article  CAS  Google Scholar 

  27. Giljohann D, Seferos D, Daniel W, Massich M, Patel P, Mirkin C (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of Science and Technology Department of Sichuan Province (Grant 2015JY0053) and the Doctoral Program of Southwest University of Science and Technology (Grant 14zx7165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Yu, H. Multifunctional gold nanoparticles as signal transducers for fabrication of 1:2 molecular demultiplexer. Anal Bioanal Chem 407, 6741–6746 (2015). https://doi.org/10.1007/s00216-015-8839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8839-3

Keywords

Navigation