Abstract
In this study, we characterized unexpected side-products in a commercially synthesized peptide with the sequence RPRTRLHTHRNR. This so-called peptide D3 was selected by mirror phage display against low molecular weight amyloid-β-peptide (Aβ) associated with Alzheimer’s disease. Capillary electrophoresis (CE) was the method of choice for structure analysis because the extreme hydrophilicity of the peptide did not allow reversed-phase liquid chromatography (RPLC) and hydrophilic interaction stationary phases (HILIC). CE-MS analysis, applying a strongly acidic background electrolyte and different statically adsorbed capillary coatings, provided fast and efficient analysis and revealed that D3 unexpectedly showed strong ion-pairing with sulfuric acid. Moreover, covalent O-sulfonation at one or two threonine residues was identified as a result of a side reaction during peptide synthesis, and deamidation was found at either the asparagine residue or at the C-terminus. In total, more than 10 different species with different m/z values were observed. Tandem-MS analysis with collision induced dissociation (CID) using a CE-quadrupole-time-of-flight (QTOF) setup predominantly resulted in sulfate losses and did not yield any further characteristic fragment ions at high collision energies. Therefore, direct infusion Fourier transform ion cyclotron resonance (FT-ICR) MS was employed to identify the covalent modification and discriminate O-sulfonation from possible O-phosphorylation by using an accurate mass analysis. Electron transfer dissociation (ETD) was used for the identification of the threonine O-sulfation sites. In this work, it is shown that the combination of CE-MS and FT-ICR-MS with ETD fragmentation was essential for the full characterization of this extremely basic peptide with labile modifications.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Wimo A, Prince M (2010) World Alzheimer report 2010: the global economic impact of dementia. Alzheimer’s Disease International, London. https://www.alz.co.uk/research/files/WorldAlzheimerReport2010.pdf. Accessed 13 Jan 2015
van Groen T, Wiesehan K, Funke SA, Kadish I, Nagel-Steger L, Willbold D (2008) Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, a D-enantiomeric peptide identified by mirror image phage display. Chem Med Chem 3:1848–1852
Wiesehan K, Willbold D (2003) Mirror-image phage display: aiming at the mirror. Chem Bio Chem 4:811–815
Funke SA, Willbold D (2009) Mirror image phage display—a method to generate d-peptide ligands for use in diagnostic or therapeutical applications. Mol BioSyst 5:783–786
Sun N, Funke SA, Willbold D (2012) Mirror image phage display—generating stable therapeutically and diagnostically active peptides with biotechnological means. J Biotechnol 161:121–125
van Groen T, Kadish I, Wiesehan K, Funke SA, Willbold D (2009) In vitro and in vivo staining characteristics of small, fluorescent, Aβ42-binding D-enantiomeric peptides in transgenic AD mouse models. Chem Med Chem 4:276–282
Bartnik D, Funke SA, Andrei-Selmer L-C, Bacher M, Dodel R, Willbold D (2009) Differently selected D-enantiomeric peptides act on different Aβ species. Rejuvenation Res 13:202–205
Olubiyi OO, Frenzel D, Bartnik D, Gluck JM, Brener O, Nagel-Steger L, Funke SA, Willbold D, Strodel B (2014) Amyloid aggregation inhibitory mechanism of arginine-rich D-peptides. Curr Med Chem 21:1448–1457
Wang X, Carr PW (2007) An unexpected observation concerning the effect of anionic additives on the retention behavior of basic drugs and peptides in reversed-phase liquid chromatography. J Chromatogr A 1154:165–173
van Groen T, Kadish I, Funke A, Bartnik D, Willbold D (2012) In: Rossen D (ed) Advances in protein chemistry and structural biology. Academic Press: Elsevier, Amsterdam
van Groen T, Kadish I, Funke SA, Bartnik D, Willbold D (2013) Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AβPP/PS1 double transgenic mice. J Alzheimers Dis 34:609–620
Funke SA, van Groen T, Kadish I, Bartnik D, Nagel-Steger L, Brener O, Sehl T, Batra-Safferling R, Moriscot C, Schoehn G, Horn AHC, Müller-Schiffmann A, Korth C, Sticht H, Willbold D (2010) Oral treatment with the d-enantiomeric peptide D3 improves the pathology and behavior of Alzheimer’s disease transgenic mice. ACS Chem Neurosci 1:639–648
Kohno T, Kusunoki H, Sato K, Wakamatsu K (1998) A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C. J Biomol NMR 12:109–121
Pattky M, Huhn C (2013) Advantages and limitations of a new cationic coating inducing a slow electroosmotic flow for CE-MS peptide analysis: a comparative study with commercial coatings. Anal Bioanal Chem 405:225–237
Nicolardi S, Giera M, Kooijman P, Kraj A, Chervet J-P, Deelder A, van der Burgt YM (2013) On-line electrochemical reduction of disulfide bonds: improved FTICR-CID and -ETD coverage of oxytocin and hepcidin. J Am Soc Mass Spectrom 24:1980–1987
Huhn C, Ramautar R, Wuhrer M, Somsen GW (2010) Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 396:297–314
Lam MY, Siu SO, Lau E, Mao X, Sun HZ, Chiu PN, Yeung WB, Cox D, Chu I (2010) Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization. Anal Bioanal Chem 398:791–804
McCalley DV (2005) Comparison of an organic polymeric column and a silica-based reversed-phase for the analysis of basic peptides by high-performance liquid chromatography. J Chromatogr A 1073:137–145
Aitken A, Learmonth M (2003) In: Smith B (ed) Protein sequencing protocols, vol 211. Methods in molecular biology. Humana Press, New York
Medzihradszky KF, Darula Z, Perlson E, Fainzilber M, Chalkley RJ, Ball H, Greenbaum D, Bogyo M, Tyson DR, Bradshaw RA, Burlingame AL (2004) O-sulfonation of serine and threonine : mass spectrometric detection and characterization of a new post-translational modification in diverse proteins throughout the eukaryotes. Mol Cell Proteomics 3:429–440
Shibue M, Mant CT, Hodges RS (2005) Effect of anionic ion-pairing reagent concentration (1–60 mM) on reversed-phase liquid chromatography elution behavior of peptides. J Chromatogr A 1080:58–67
Lerro KA, Orlando R, Zhang HZ, Usherwood PNR, Nakanishi K (1993) Separation of the sticky peptides from membrane proteins by high-performance liquid chromatography in a normal-phase system. Anal Biochem 215:38–44
Kostiainen R, Kauppila TJ (2009) Effect of eluent on the ionization process in liquid chromatography–mass spectrometry. J Chromatogr A 1216:685–699
Neubert H, James I (2009) Online capillary weak cation exchange enrichment hyphenated to nanospray mass spectrometry for quantitation of a basic pegvisomant derived peptide. J Chromatogr A 1216:6151–6154
Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25
Yoshida T (2004) Peptide separation by hydrophilic-interaction chromatography: a review. J Biochem Biophys Methods 60:265–280
Zauner G, Deelder AM, Wuhrer M (2011) Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32:3456–3466
Singer D, Kuhlmann J, Muschket M, Hoffmann R (2010) Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase. Anal Chem 82:6409–6414
Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80:62–76
Jiang W, Fischer G, Girmay Y, Irgum K (2006) Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. J Chromatogr A 1127:82–91
Lämmerhofer M, Nogueira R, Lindner W (2011) Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction, and hydrophobic interaction chromatography modes. Anal Bioanal Chem 400:2517–2530
Boysen RI, Yang Y, Chowdhury J, Matyska MT, Pesek JJ, Hearn MTW (2011) Simultaneous separation of hydrophobic and hydrophilic peptides with a silica hydride stationary phase using aqueous normal phase conditions. J Chromatogr A 1218:8021–8026
Wilce MCJ, Aguilar M-I, Hearn MTW (1995) Physicochemical basis of amino acid hydrophobicity scales: evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides. Anal Chem 67:1210–1219
Schmitt-Kopplin P, Frommberger M (2003) Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 24:3837–3867
Fonslow BR, Yates JR III (2009) Capillary electrophoresis applied to proteomic analysis. J Sep Sci 32:1175–1188
Gennaro LA, Salas-Solano O (2009) Characterization of deamidated peptide variants by micropreparative capillary electrophoresis and mass spectrometry. J Chromatogr A 1216:4499–4503
Gaus HJ, Beck-Sickinger AG, Bayer E (1993) Optimization of capillary electrophoresis of mixtures of basic peptides and comparison with HPLC. Anal Chem 65:1399–1405
Timm V, Gruber P, Wasiliu M, Lindhofer H, Chelius D (2010) Identification and characterization of oxidation and deamidation sites in monoclonal rat/mouse hybrid antibodies. J Chromatogr B 878:777–784
Lai M, Skanchy D, Stobaugh J, Topp E (1998) Capillary electrophoresis separation of an asparagine containing hexapeptide and its deamidation products. J Pharm Biomed Anal 18:421–427
Timerbaev AR (2000) Element speciation analysis by capillary electrophoresis. Talanta 52:573–606
Schug KA, Lindner W (2004) Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev 105:67–114
Kim J, Zand R, Lubman DM (2002) Electrophoretic mobility for peptides with post-translational modifications in capillary electrophoresis. Electrophoresis 23:782–793
Pattky M, Huhn C (2010) Protein glycosylation analysis with capillary-based electromigrative separation techniques. Bioanal Rev 2:115–155
Young SY, Ye SH, Moo JS, Park J (1997) Analysis of phosphopeptides by capillary electrophoresis and matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. J Chromatogr A 763:285–293
Dong Y-M, Chien K-Y, Chen J-T, Lin S-J, Yu J-S, Wang T-CV (2013) Site-specific separation and detection of phosphopeptide isomers with pH-mediated stacking capillary electrophoresis-electrospray ionization-tandem mass spectrometry. J Sep Sci 36:1582–1589
Tadey T, Purdy WC (1995) Capillary electrophoretic resolution of phosphorylated peptide isomers using micellar solutions and coated capillaries. Electrophoresis 16:574–579
Dawson JF, Boland MP, Holmes CFB (1994) A capillary electrophoresis-based assay for protein kinases and protein phosphatases using peptide substrates. Anal Biochem 220:340–345
Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44:861–878
Seibert C, Sakmar TP (2008) Toward a framework for sulfoproteomics: synthesis and characterization of sulfotyrosine-containing peptides. Pept Sci 90:459–477
Drake SK, Hortin GL (2010) Improved detection of intact tyrosine sulfate-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in linear negative ion mode. Int J Biochem Cell Biol 42:174–179
Kim J-S, Song S-U, Kim H-J (2011) Simultaneous identification of tyrosine phosphorylation and sulfation sites utilizing tyrosine-specific bromination. J Am Soc Mass Spectrom 22:1916–1925
Li W, Backlund PS, Boykins RA, Wang G, Chen H-C (2003) Susceptibility of the hydroxyl groups in serine and threonine to β-elimination/Michael addition under commonly used moderately high-temperature conditions. Anal Biochem 323:94–102
Yu Y, Hoffhines AJ, Moore KL, Leary JA (2007) Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat Methods 4:583–588
Cantel S, Brunel L, Ohara K, Enjalbal C, Martinez J, Vasseur J-J, Smietana M (2012) An innovative strategy for sulfopeptides analysis using MALDI-TOF MS reflectron positive ion mode. Proteomics 12:2247–2257
Stensballe A, Jensen ON, Olsen JV, Haselmann KF, Zubarev RA (2000) Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom 14:1793–1800
Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221
Monigatti F, Hekking B, Steen H (2006) Protein sulfation analysis—a primer. Biochim Biophys Acta Proteins Proteomics 1764:1904–1913
Bakhtiar R, Guan Z (2006) Electron capture dissociation mass spectrometry in characterization of peptides and proteins. Biotechnol Lett 28:1047–1059
Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JEP, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta Proteins Proteomics 1764:1811–1822
Crowe MC, Brodbelt JS (2004) Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. J Am Soc Mass Spectrom 15:1581–1592
Jaeger E, Remmer HA, Jung G, Metzger J, Oberthür W, Rücknagel KP, Schäfer W, Johann S, Zetl I (1993) Nebenreaktionen bei peptidsynthesen, V. O-sulfonierung von serin und threonin während der abspaltung der pmc- und mtr-schutzgruppen von argininresten bei fmoc-festphasen-synthesen. Biol Chem 374:349–362
Beck-Sickinger AG, Schnorrenberg G, Metzger J, Jung G (1991) Sulfonation of arginine residues as side reaction in Fmoc-peptide synthesis. Int J Pept Protein Res 38:25–31
Green J, Ogunjobi OM, Ramage R, Stewart ASJ, McCurdy S, Noble R (1988) Application of the NG-(2,2,5,7,8-pentamethylchroman-6-sulphonyl) derivative of FMOC-arginine to peptide synthesis. Tetrahedron Lett 29:4341–4344
Ramage R, Green J (1987) NG-2,2,5,7,8-pentamethylchroman-6-sulphonyl-L-arginine: a new acid labile derivative for peptide synthesis. Tetrahedron Lett 28:2287–2290
Head E, Garzon-Rodriguez W, Johnson JK, Lott IT, Cotman CW, Glabe C (2001) Oxidation of Aβ and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol Dis 8:792–806
Acknowledgments
The authors thank the Helmholtz Initiative and Networking Fund as well as the German Excellence Initiative commissioned by the German Research Foundation (DFG) for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pattky, M., Nicolardi, S., Santiago-Schübel, B. et al. Structure characterization of unexpected covalent O-sulfonation and ion-pairing on an extremely hydrophilic peptide with CE-MS and FT-ICR-MS. Anal Bioanal Chem 407, 6637–6655 (2015). https://doi.org/10.1007/s00216-015-8826-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-015-8826-8

