Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 21, pp 6463–6479 | Cite as

Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MS n and GC-MS analysis

  • Christof B. SteingassEmail author
  • Mona P. Glock
  • Ralf M. Schweiggert
  • Reinhold Carle
Research Paper

Abstract

In a comprehensive study, more than 60 phenolic compounds were detected in methanolic extracts from different tissues of pineapple infructescence by high-performance liquid chromatography with diode array detection and electrospray ionisation multiple-stage mass spectrometry (HPLC-DAD-ESI-MS n ) as well as by gas chromatography-mass spectrometry (GC-MS). The analytical workflow combining both methods revealed numerous compounds assigned for the first time as pineapple constituents by their mass fragmentations. Pineapple crown tissue was characterised by depsides of p-coumaric and ferulic acid. In contrast, major phenolic compounds in pineapple pulp extracts were assigned to diverse S-p-coumaryl, S-coniferyl and S-sinapyl derivatives of glutathione, N-l-γ-glutamyl-l-cysteine and l-cysteine, which were also identified in the peel. The latter was additionally characterised by elevated concentrations of p-coumaric, ferulic and caffeic acid depsides and glycerides, respectively. Two peel-specific cyanidin hexosides were found. Elevated concentrations of isomeric N,N′-diferuloylspermidines may be a useful tool for the detection of fraudulent peel usage for pineapple juice production. Mass fragmentation pathways of characteristic pineapple constituents are proposed, and their putative biological functions are discussed.

Keywords

Glycosides Phenolic acid esters Depsides Glutathione conjugates Spermidine derivatives 

Abbreviations

bp intensity

Base peak intensity

CID

Collision-induced dissociation

CR

Crown

E(Z)

Pyroglutamic acid

ESI-MS

Electrospray ionisation mass spectrometry

GC-MS

Gas chromatography-mass spectrometry

GSH

Glutathione

hex

Hexose

HPLC-DAD

High-performance liquid chromatography-diode array detection

LLE

Liquid-liquid extraction

LRI

Linear retention index

MS

Mass spectrometry

NMR

Nuclear magnetic resonance

PTFE

Polytetrafluoroethylene

RP

Reversed phase

SPE

Solid-phase extraction

TIC

Total ion current

tR

Retention time

γ-EC

N-l-γ-Glutamyl-l-cysteine

Notes

Acknowledgments

C.B.S. gratefully acknowledges a Ph.D. scholarship granted by the Landesgraduiertenförderung Baden-Württemberg. We thank Frank Oberschilp (Peelco, Accra, Ghana) and Fritz Schumacher (Schumacher, Filderstadt-Bernhausen, Germany) for kindly supplying the pineapple fruits.

Supplementary material

216_2015_8811_MOESM1_ESM.pdf (700 kb)
ESM 1 (PDF 700 kb)

References

  1. 1.
    Bartholomew DP, Paull RE, Rohrbach KG (eds) (2003) The pineapple—botany, production and uses. CABI, WallingfordGoogle Scholar
  2. 2.
    Steingass CB, Carle R, Schmarr H-G (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407(9):2591–2608CrossRefGoogle Scholar
  3. 3.
    Steingass CB, Jutzi M, Müller J, Carle R, Schmarr H-G (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407(9):2609–2624CrossRefGoogle Scholar
  4. 4.
    Steingass CB, Langen J, Carle R, Schmarr H-G (2015) Authentication of pineapple (Ananas comosus [L.] Merr.) fruit maturity stages by quantitative analysis of γ- and δ-lactones using headspace solid-phase microextraction and chirospecific gas chromatography-selected ion monitoring mass spectrometry (HS-SPME-GC-MS-SIM). Food Chem 168:496–503CrossRefGoogle Scholar
  5. 5.
    Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O (2010) Pineapple (Ananas comosus [L.] Merril) flavor. In: Hui YH (ed) Handbook of fruit and vegetable flavors. Wiley, Hoboken, pp 391–414CrossRefGoogle Scholar
  6. 6.
    Steingass CB, Grauwet T, Carle R (2014) Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). Food Chem 150:382–391CrossRefGoogle Scholar
  7. 7.
    Wen L, Wrolstad RE, Hsu VL (1999) Characterization of sinapyl derivatives in pineapple (Ananas comosus [L.] Merill) juice. J Agric Food Chem 47(3):850–853CrossRefGoogle Scholar
  8. 8.
    Wrolstad RE, Wen L (2001) Natural antibrowning and antioxidant compositions and methods for making the same US 62774926 B1Google Scholar
  9. 9.
    Wen L, Wrolstad RE (2002) Phenolic composition of authentic pineapple juice. J Food Sci 67(1):155–163CrossRefGoogle Scholar
  10. 10.
    Zheng Z, Ma J, Cheng K, Chao J, Zhu Q, Chang RC, Zhao M, Lin Z, Wang M (2010) Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit. Phytochemistry 71(17–18):2046–2051CrossRefGoogle Scholar
  11. 11.
    Peñalvo JL, Haajanen KM, Botting N, Adlercreutz H (2005) Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J Agric Food Chem 53(24):9342–9347CrossRefGoogle Scholar
  12. 12.
    Ma C, Xiao S, Li Z, Wang W, Du L (2007) Characterization of active phenolic components in the ethanolic extract of Ananas comosus L. leaves using high-performance liquid chromatography with diode array detection and tandem mass spectrometry. J Chromatogr A 1165(1–2):39–44CrossRefGoogle Scholar
  13. 13.
    Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 12(11):401–413CrossRefGoogle Scholar
  14. 14.
    Sweeley CC, Bentley R, Makita M, Wells WW (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85(16):2497–2507CrossRefGoogle Scholar
  15. 15.
    Kim D, Lee CY (2002) Extraction and isolation of polyphenolics. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith DM, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New York, pp I1.2.1–I1.2.12Google Scholar
  16. 16.
    Kammerer D, Claus A, Carle R, Schieber A (2004) Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J Agric Food Chem 52(14):4360–4367CrossRefGoogle Scholar
  17. 17.
    Krygier K, Sosulski F, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J Agric Food Chem 30(2):330–334CrossRefGoogle Scholar
  18. 18.
    Lorenz P, Conrad J, Bertrams J, Berger M, Duckstein S, Meyer U, Stintzing FC (2012) Investigations into the phenolic constituents of dog’s mercury (Mercurialis perennis L.) by LC-MS/MS and GC-MS analyses. Phytochem Anal 23(1):60–71CrossRefGoogle Scholar
  19. 19.
    Suzuki S, Sakakibara N, Li L, Umezawa T, Chiang VL (2010) Profiling of phenylpropanoid monomers in developing xylem tissue of transgenic aspen (Populus tremuloides). J Wood Sci 56(1):71–76CrossRefGoogle Scholar
  20. 20.
    Lorenz P, Knödler M, Bertrams J, Berger M, Meyer U, Stintzing FC (2010) n-Alkylresorcinol occurrence in Mercurialis perennis L. (Euphorbiaceae). Z Naturforsch 65(3–4):174–179Google Scholar
  21. 21.
    Lorenz P, Berger M, Bertrams J, Wende K, Wenzel K, Lindequist U, Meyer U, Stintzing FC (2008) Natural wax constituents of a supercritical fluid CO2 extract from quince (Cydonia oblonga Mill.) pomace. Anal Bioanal Chem 391(2):633–646CrossRefGoogle Scholar
  22. 22.
    Duckstein SM, Lorenz P, Stintzing FC (2012) Conversion of phenolic constituents in aqueous Hamamelis virginiana leaf extracts during fermentation. Phytochem Anal 23(6):588–597CrossRefGoogle Scholar
  23. 23.
    Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471CrossRefGoogle Scholar
  24. 24.
    National Institute of Standards and Technology (2013) NIST Chemistry WebBook. http://webbook.nist.gov/. Accessed 3 Feb 2015
  25. 25.
    Molnár-Perl I, Vasanits A, Horváth K (1998) Simultaneous GC-MS quantitation of phosphoric, aliphatic and aromatic carboxylic acids, proline and hydroxymethylfurfurol as their trimethylsilyl derivatives: in model solutions II. Chromatographia 48(1–2):111–119CrossRefGoogle Scholar
  26. 26.
    Horman I, Viani R (1971) Plant-polyphenols and related compounds. A mass-spectrometric study of the trimethylsilyl derivatives of hydroxy- and/or methoxy-substituted cinnamic acids and of their methyl esters. Org Mass Spectrom 5(2):203–219CrossRefGoogle Scholar
  27. 27.
    Molnár-Perl I, Horváth K, Bartha R (1998) GC-MS quantitation of benzoic and aralkyl carboxylic acids as their trimethylsilyl derivatives: in model solutions I. Chromatographia 48(1–2):101–110CrossRefGoogle Scholar
  28. 28.
    Lin L, Harnly JM (2007) A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem 55(4):1084–1096CrossRefGoogle Scholar
  29. 29.
    Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51(10):2900–2911CrossRefGoogle Scholar
  30. 30.
    Stintzing FC, Kammerer D, Schieber A, Adama H, Nacoulma OG, Carle R (2004) Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z Naturforsch 59(1–2):1–8CrossRefGoogle Scholar
  31. 31.
    Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjana W (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24(9):3506–3529CrossRefGoogle Scholar
  32. 32.
    Maier C, Conrad J, Carle R, Weiss J, Schweiggert RM (2015) Phenolic constituents in commercial aqueous Quillaja (Quillaja saponaria Molina) wood extracts. J Agric Food Chem 63(6):1756–1762CrossRefGoogle Scholar
  33. 33.
    Zywicki B, Reemtsma T, Jekel M (2002) Analysis of commercial vegetable tanning agents by reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry and its application to wastewater. J Chromatogr A 970(1–2):191–200CrossRefGoogle Scholar
  34. 34.
    Eklund PC, Backman MJ, Kronberg LÅ, Smeds AI, Sjöholm RE (2008) Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J Mass Spectrom 43(1):97–107CrossRefGoogle Scholar
  35. 35.
    Dieckhaus CM, Fernández-Metzler CL, King R, Krolikowski PH, Baillie TA (2005) Negative ion tandem mass spectrometry for the detection of glutathione conjugates. Chem Res Toxicol 18(4):630–638CrossRefGoogle Scholar
  36. 36.
    Thakur SS, Balaram P (2008) Fragmentation of peptide disulfides under conditions of negative Ion mass spectrometry: studies of oxidized glutathione and contryphan. J Am Soc Mass Spectrom 19(3):358–366CrossRefGoogle Scholar
  37. 37.
    Youhnovski N, Bigler L, Werner C, Hesse M (1998) On-line coupling of high-performance liquid chromatography to atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS and MS/MS). The pollen analysis of hippeastrum x hortorum (Amaryllidaceae). Helv Chim Acta 81(9):1654–1671CrossRefGoogle Scholar
  38. 38.
    Kite GC, Larsson S, Veitch NC, Porter EA, Ding N, Simmonds MSJ (2013) Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks. J Agric Food Chem 61(14):3501–3508CrossRefGoogle Scholar
  39. 39.
    Sobolev VS, Sy AA, Gloer JB (2008) Spermidine and flavonoid conjugates from peanut (Arachis hypogaea) flowers. J Agric Food Chem 56(9):2960–2969CrossRefGoogle Scholar
  40. 40.
    Kammerer D, Carle R, Schieber A (2004) Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur Food Res Technol 219(5):479–486CrossRefGoogle Scholar
  41. 41.
    Saito N, Harborne JB (1983) A cyanidin glycoside giving scarlet coloration in plants of the Bromeliaceae. Phytochemistry 22(8):1735–1740CrossRefGoogle Scholar
  42. 42.
    Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T (1992) Volatile constituents of green and ripened pineapple (Ananas comosus [L.] Merr.). J Agric Food Chem 40(4):599–603CrossRefGoogle Scholar
  43. 43.
    Wu P, Kuo MC, Hartman TG, Rosen RT, Ho CT (1991) Free and glycosidically bound aroma compounds in pineapple (Ananas comosus L. Merr.). J Agric Food Chem 39(1):170–172CrossRefGoogle Scholar
  44. 44.
    Elliger CA, Lundin RE, Haddon WF (1981) Caffeyl esters of glucaric acid in Lycopersicon esculentum leaves. Phytochemistry 20(5):1133–1134CrossRefGoogle Scholar
  45. 45.
    Strack D, Gross W, Wray V, Grotjahn L (1987) Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol 83(3):475–478CrossRefGoogle Scholar
  46. 46.
    Strack D, Keller H, Weissenbock G (1987) Enzymatic synthesis of hydroxycinnamic acid esters of sugar acids and hydroaromatic acids by protein preparations from rye (Secale cereale) primary leaves. J Plant Physiol 131(1–2):61–73CrossRefGoogle Scholar
  47. 47.
    Risch B, Herrmann K, Wray V, Grotjahn L (1987) 2′-(E)-O-p-Coumaroylgalactaric acid and 2′-(E)-O-feruloylgalactaric acid in citrus. Phytochemistry 26(2):509–510CrossRefGoogle Scholar
  48. 48.
    Risch B, Herrmann K, Wray V (1988) (E)-O-p-coumaroyl-, (E)-O-feruloyl-derivatives of glucaric acid in citrus. Phytochemistry 27(10):3327–3329CrossRefGoogle Scholar
  49. 49.
    Maas M, Petereit F, Hensel A (2009) Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules 14(1):36–45CrossRefGoogle Scholar
  50. 50.
    Smith BG, Harris PJ (2001) Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls. Phytochemistry 56(5):513–519CrossRefGoogle Scholar
  51. 51.
    Strack D, Paula L, Maria B, Victor W, Lutz G (1987) Hydroxycinnamic acid esters of isocitric acid: accumulation and enzymatic synthesis in Amaranthus cruentus. Phytochemistry 26(11):2919–2922CrossRefGoogle Scholar
  52. 52.
    Hauck B, Gallagher JA, Morris SM, Leemans D, Winters AL (2014) Soluble phenolic compounds in fresh and ensiled orchard grass (Dactylis glomerata L.), a common species in permanent pastures with potential as a biomass feedstock. J Agric Food Chem 62(2):468–475CrossRefGoogle Scholar
  53. 53.
    Martin-Tanguy J, Cabanne F, Perdrizet E, Martin C (1978) The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17(11):1927–1928CrossRefGoogle Scholar
  54. 54.
    Silva DB, Turatti ICC, Gouveia DR, Ernst M, Teixeira SP, Lopes NP (2014) Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci Rep 4:1–8Google Scholar
  55. 55.
    Delaporte RH, Guzen KP, Laverde A Jr, dos Santos AR, Sarragiotto MH (2006) Phenylpropanoid glycerols from Tillandsia streptocarpa Baker (Bromeliaceae). Biochem Syst Ecol 34(7):599–602CrossRefGoogle Scholar
  56. 56.
    Jandrić Z, Roberts D, Rathor MN, Abrahim A, Islam M, Cannavan A (2014) Assessment of fruit juice authenticity using UPLC–QToF MS: a metabolomics approach. Food Chem 148:7–17CrossRefGoogle Scholar
  57. 57.
    Mullen W, Marks SC, Crozier A (2007) Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J Agric Food Chem 55(8):3148–3157CrossRefGoogle Scholar
  58. 58.
    Thompson D, Norbeck K, Olsson L, Constantin-Teodosiu D, Van der Zee J, Moldeus P (1989) Peroxidase-catalyzed oxidation of eugenol: formation of a cytotoxic metabolite(s). J Biol Chem 264(2):1016–1021Google Scholar
  59. 59.
    Thompson D, Constantin-Teodosiu D, Egestad B, Mickos H, Moldeus P (1990) Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung. Biochem Pharmacol 39(10):1587–1595CrossRefGoogle Scholar
  60. 60.
    Kritzinger EC, Bauer FF, Du Toit WJ (2013) Role of glutathione in winemaking: a review. J Agric Food Chem 61(2):269–277CrossRefGoogle Scholar
  61. 61.
    Silverstein RM, Rodin JO, Himel CM, Leeper RW (1965) Volatile flavor and aroma components of pineapple II. Isolation and identification of chavicol and γ-caprolactone. J Food Sci 30(4):668–672CrossRefGoogle Scholar
  62. 62.
    Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):127–158CrossRefGoogle Scholar
  63. 63.
    Heinicke RM, Gortner WA (1957) Stem bromelain—a new protease preparation from pineapple plants. Econ Bot 11(3):225–234CrossRefGoogle Scholar
  64. 64.
    Cejudo-Bastante MJ, Pérez-Coello MS, Hermosín-Gutiérrez I (2010) Identification of new derivatives of 2-S-glutathionylcaftaric acid in aged white wines by HPLC-DAD-ESI-MSn. J Agric Food Chem 58(21):11483–11492CrossRefGoogle Scholar
  65. 65.
    Cheynier VF, Trousdale EK, Singleton VL, Salgues MJ, Wylde R (1986) Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines. J Agric Food Chem 34(2):217–221CrossRefGoogle Scholar
  66. 66.
    Richard FC, Goupy PM, Nicolas JJ, Lacombe J, Pavia AA (1991) Cysteine as an inhibitor of enzymatic browning. 1. Isolation and characterization of addition compounds formed during oxidation of phenolics by apple polyphenol oxidase. J Agric Food Chem 39(5):841–847CrossRefGoogle Scholar
  67. 67.
    Dean JV, Devarenne TP, Lee IS, Orlofsky LE (1995) Properties of a maize glutathione S-transferase that conjugates coumaric acid and other phenylpropanoids. Plant Physiol 108(3):985–994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christof B. Steingass
    • 1
    Email author
  • Mona P. Glock
    • 1
  • Ralf M. Schweiggert
    • 1
  • Reinhold Carle
    • 1
    • 2
  1. 1.Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and AnalysisHohenheim UniversityStuttgartGermany
  2. 2.Biological Science Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations