Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 20, pp 5989–5998 | Cite as

Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS

  • Vilmos KerteszEmail author
  • David Calligaris
  • Daniel R. Feldman
  • Armen Changelian
  • Edward R. Laws
  • Sandro Santagata
  • Nathalie Y. R. AgarEmail author
  • Gary J. Van Berkel
Paper in Forefront

Abstract

Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC–ESI-MS–MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis), and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH-secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH-secreting adenomas and in normal anterior adenohypophysis compared with non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis, as expected. This work reveals that a fully automated droplet-based liquid-microjunction surface-sampling system coupled to HPLC–ESI-MS–MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, including AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity, and specificity of this method support the potential of this basic technology, with further advancement, for assisting surgical decision-making.

Graphical Abstract

Mass spectrometry based profiling of hormones in human pituitary gland and tumor thin tissue sections

Keywords

Liquid microjunction Droplet-based liquid extraction Autosampler Spatial distribution Human pituitary Protein Adrenocorticotropic hormone (ACTH) AVP (vasopressin) Pituitary adenoma 

Notes

Acknowledgments

This project was supported by AB Sciex through a Cooperative Research and Development Agreement (CRADA NFE-10-02966). The API 4000 used in this work was provided on loan from AB Sciex as part of the CRADA. NYRA was supported by the Daniel E. Ponton Fund for the Neurosciences, the DFCI Pediatric Low-Grade Astrocytoma (PLGA) Program, and the NIH Director’s New Innovator Award (Grant 1DP2OD007383‐01). The authors would like to thank Aaron Bickel, James Glick, and Jimmy Flarakos from Novartis Institutes for Biomedical Research (Cambridge, MA) for their valuable help in 3D printing of the custom tray. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725.

Supplementary material

216_2015_8803_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1.25 MB)
ESM 2

(MPG 30.8 MB)

References

  1. 1.
    Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, Liu X, Wiley JS, Vestal ML, Ramkissoon SH, Orringer DA, Gilla KK, Dunn IF, Dias-Santagata D, Ligon KL, Jolesz FA, Golby AJ, Cooks RG, Agar NYR (2014) Proc Natl Acad Sci U S A 111:11121–11126CrossRefGoogle Scholar
  2. 2.
    Balog J, Sasi-Szabo L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezso B, Damjanovich L, Darzi A, Nicholson JK, Takats Z (2013) Sci Trans Med 5:194ra93CrossRefGoogle Scholar
  3. 3.
    Goodman S, O’Connor A, Kandil D, Khan A (2014) Arch Pathol Lab Med 138:57–64CrossRefGoogle Scholar
  4. 4.
    Rey-Dios R, Hattab EM, Cohen-Gadol AA (2014) Acta Neurochir 156:1071–1075CrossRefGoogle Scholar
  5. 5.
    Spicer J, Benay C, Lee L, Rousseau M, Andalib A, Kushner Y, Marcus V, Ferri L (2014) Ann Surg Oncol 21:2580–2586CrossRefGoogle Scholar
  6. 6.
    Ramos-Vara JA, Miller MA (2014) Vet Pathol 51:42–87CrossRefGoogle Scholar
  7. 7.
    Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NYR (2012) Cancer Res 72:645–654CrossRefGoogle Scholar
  8. 8.
    Eberlin LS, Liu XH, Ferreira CR, Santagata S, Agar NYR, Cooks RG (2011) Anal Chem 83:8366–8371CrossRefGoogle Scholar
  9. 9.
    Calligaris D, Caragacianu D, Liu X, Norton I, Thompson CJ, Richardson AL, Golshan M, Easterling ML, Santagata S, Dillon DA, Jolesz FA, Agara NYR (2014) Proc Natl Acad Sci U S A 111:15184–15189CrossRefGoogle Scholar
  10. 10.
    Balog J, Szaniszlo T, Schaefer KC, Denes J, Lopata A, Godorhazy L, Szalay D, Balogh L, Sasi-Szabo L, Toth M, Takats Z (2010) Anal Chem 82:7343–7350CrossRefGoogle Scholar
  11. 11.
    Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Anal Chem 80:5168–5177CrossRefGoogle Scholar
  12. 12.
    Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) J Mass Spectrom 43:1161–1180CrossRefGoogle Scholar
  13. 13.
    Van Berkel GJ, Sanchez AD, Quirke JME (2002) Anal Chem 74:6216–6223CrossRefGoogle Scholar
  14. 14.
    Van Berkel GJ, Kertesz V, King RC (2009) Anal Chem 81:7096–7101CrossRefGoogle Scholar
  15. 15.
    Van Berkel GJ, Kertesz V, Koeplinger KA, Vavrek M, Kong AT (2008) J Mass Spectrom 43:500–508CrossRefGoogle Scholar
  16. 16.
    Kertesz V, Van Berkel GJ (2010) J Mass Spectrom 45:252–260CrossRefGoogle Scholar
  17. 17.
    Edwards RL, Griffiths P, Bunch J, Cooper HJ (2014) Proteomics 14:1232–1238CrossRefGoogle Scholar
  18. 18.
    Randall EC, Bunch J, Cooper HJ (2014) Anal Chem 86:10504–10510CrossRefGoogle Scholar
  19. 19.
    Sarsby J, Martin NJ, Lalor PF, Bunch J, Cooper HJ (2014) J Am Soc Mass Spectrom 25:1953–1961CrossRefGoogle Scholar
  20. 20.
    Martin NJ, Bunch J, Cooper HJ (2013) J Am Soc Mass Spectrom 24:1242–1249CrossRefGoogle Scholar
  21. 21.
    Edwards RL, Creese AJ, Baumert M, Griffiths P, Bunch J, Cooper HJ (2011) Anal Chem 83:2265–2270CrossRefGoogle Scholar
  22. 22.
    Edwards RL, Griffiths P, Bunch J, Cooper HJ (2012) J Am Soc Mass Spectrom 23:1921–1930CrossRefGoogle Scholar
  23. 23.
    Rao W, Celiz AD, Scurr DJ, Alexander MR, Barrett DA (2013) J Am Soc Mass Spectrom 24:1927–1936CrossRefGoogle Scholar
  24. 24.
    Tomlinson L, Fuchser J, Futterer A, Baumert M, Hassall DG, West A, Marshall PS (2014) Rapid Commun Mass Spectrom 28:995–1003CrossRefGoogle Scholar
  25. 25.
    Geho MD, Espina V, Liotta LA, Petricoin EF, Wulfkuhle JD (2008) Chapter 9. “Clinical Proteomics”. In: Cheng L, Zhang DY (eds) Molecular Genetic Pathology. Humana Press, TotowaGoogle Scholar
  26. 26.
    Masucci JA, Mahan AD, Kwasnoski JD, Caldwell GW (2012) Curr Top Med Chem 12:1243–1249CrossRefGoogle Scholar
  27. 27.
    Ackermann BL, Berna MJ, Eckstein JA, Ott LW, Chaudhary AK (2008) Ann Rev Anal Chem 1:357–396CrossRefGoogle Scholar
  28. 28.
    Kertesz V, Van Berkel GJ (2010) Anal Chem 82:5917–5921CrossRefGoogle Scholar
  29. 29.
    Kertesz V, Van Berkel GJ (2013) Bioanalysis 5:819–826CrossRefGoogle Scholar
  30. 30.
    Van Berkel GJ, Kertesz V (2013) Rapid Commun Mass Spectrom 27:1329–1334CrossRefGoogle Scholar
  31. 31.
    Kertesz V, Paranthaman N, Moench P, Catoire A, Flarakos J, Van Berkel GJ (2014) Bioanalysis 6:2599–2606CrossRefGoogle Scholar
  32. 32.
    Kertesz V, Weiskittel TM, Van Berkel GJ (2015) Anal Bioanal Chem 407:2117–2125CrossRefGoogle Scholar
  33. 33.
    Abu-Rabie P, Spooner N (2011) Bioanalysis 3:2769–2781CrossRefGoogle Scholar
  34. 34.
    Heinig K, Wirz T, Gajate-Perez A (2010) Bioanalysis 2:1873–1882CrossRefGoogle Scholar
  35. 35.
    Kertesz V, Van Berkel GJ (2014) Rapid Commun Mass Spectrom 28:1553–1560CrossRefGoogle Scholar
  36. 36.
    Calligaris D, Norton I, Feldman DR, Ide JL, Dunn IF, Eberlin LS, Cooks RG, Jolesz FA, Golby AJ, Santagata S, Agar NY (2013) J Mass Spectrom 48:1178–1187CrossRefGoogle Scholar
  37. 37.
    http://www.openscad.org. Last checked on May 1, 2015. OpenSCAD is Free Software released under the General Public License version 2
  38. 38.
    Aihara H, Tamaki N, Ueyama T, Ishihara Y, Kondoh T (1996) Neuro Surg 24:1119–1123Google Scholar
  39. 39.
    Flitsch J, Schmid SM, Bernreuther C, Winterberg B, Ritter MM, Lehnert H, Burkhardt T (2014) Pituitary 18:279–282CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Nussey S, Whitehead S (2001) Endocrinology: An Integrated Approach, Chapter 7: The pituitary gland. BIOS Scientific Publishers, OxfordCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vilmos Kertesz
    • 1
    Email author
  • David Calligaris
    • 2
  • Daniel R. Feldman
    • 2
  • Armen Changelian
    • 2
  • Edward R. Laws
    • 2
  • Sandro Santagata
    • 3
  • Nathalie Y. R. Agar
    • 2
    • 4
    Email author
  • Gary J. Van Berkel
    • 1
  1. 1.Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of NeurosurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations