Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8291–8301 | Cite as

Combined fiber probe for fluorescence lifetime and Raman spectroscopy

  • Sebastian Dochow
  • Dinglong Ma
  • Ines Latka
  • Thomas Bocklitz
  • Brad Hartl
  • Julien Bec
  • Hussain Fatakdawala
  • Eric Marple
  • Kirk Urmey
  • Sebastian Wachsmann-Hogiu
  • Michael Schmitt
  • Laura Marcu
  • Jürgen Popp
Paper in Forefront
Part of the following topical collections:
  1. Raman4Clinics

Abstract

In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated.

Graphical Abstract

An image comparison between FLIm and Raman spectroscopy acquired with the bimodal probe onseveral tissue samples

Keywords

Fluorescence lifetime Raman spectroscopy Bimodal Imaging Fiber probes 

Supplementary material

216_2015_8800_MOESM1_ESM.pdf (80 kb)
ESM 1(PDF 79 kb)

References

  1. 1.
    Coda S, Thillainayagam AV (2014) State of the art in advanced endoscopic imaging for the detection and evaluation of dysplasia and early cancer of the gastrointestinal tract. Clin Exp Gastroenterol 7:133–150CrossRefGoogle Scholar
  2. 2.
    Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung ELM, Schnitzer MJ (2005) Fiber-optic fluorescence imaging. Nat Methods 2:941–950CrossRefGoogle Scholar
  3. 3.
    Movasaghi Z, Rehman S, Ihtesham D, Rehman U (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541CrossRefGoogle Scholar
  4. 4.
    Tu Q, Chang C (2012) Diagnostic applications of Raman spectroscopy. Nanomedicine 8:545–558CrossRefGoogle Scholar
  5. 5.
    Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J (2015) Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn. doi:10.1586/14737159.2015.1036744 Google Scholar
  6. 6.
    Krafft C, Dochow S, Latka I, Dietzek B, Popp J (2012) Diagnosis and screening of cancer tissues by fiber-optic probe Raman spectroscopy. Biomed Spectrosc Imaging 1:39–55. doi:10.3233/BSI-2012-0004 Google Scholar
  7. 7.
    Latka I, Dochow S, Krafft C, Dietzek B, Popp J (2013) Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photonics Rev 7:698–731. doi:10.1002/lpor.201200049 CrossRefGoogle Scholar
  8. 8.
    Wang W, Zhao J, Short M, Zeng H (2014) Real-time in vivo cancer diagnosis using Raman spectroscopy. J Biophotonics 19:1–19. doi:10.1002/jbio.201400026 Google Scholar
  9. 9.
    Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A (2011) A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med 43:143–151CrossRefGoogle Scholar
  10. 10.
    Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH, Koloydenko AA, Williams HC, Notingher I (2013) Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. PNAS 110:15189–15194CrossRefGoogle Scholar
  11. 11.
    Šćepanović OR, Fitzmaurice M, Gardecki JA, Angheloiu GO, Awasthi S, Motz JT, Kramer JR, Dasari RR, Feld MS (2006) Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy. J Biomed Opt 11:021007. doi:10.1117/1.2187943 CrossRefGoogle Scholar
  12. 12.
    Sharma M, Marple E, Reichenberg J, Tunnell JW (2014) Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications. Rev Sci Instrum 85:083101. doi:10.1063/1.4890199 CrossRefGoogle Scholar
  13. 13.
    Šćepanović OR, Fitzmaurice M, Miller A, Kong C-R, Volynskaya Z, Dasari RR, Kramer JR, Feld MS (2011) Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque. J Biomed Opt 16:011009-1–011009-10Google Scholar
  14. 14.
    Sun Y, Phipps JE, Meier J, Hatami N, Poirier B, Elson DS et al (2013) Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc Microanal 19:791–798CrossRefGoogle Scholar
  15. 15.
    Cheng S, Rico-Jimenez JJ, Jabbour J, Malik B, Maitland KC, Wright J et al (2015) Flexible endoscope for continuous in vivo multispectral fluorescence lifetime imaging. Opt Lett 38:1515–1517CrossRefGoogle Scholar
  16. 16.
    Sparks H, Warren S, Guedes J, Yoshida N, Charn TC, Guerra N et al (2014) A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue. J Biophotonics 11:1–11. doi:10.1002/jbio.201300203 Google Scholar
  17. 17.
    Ma D, Bec J, Yankelevich D, Gorpas D, Fatakdawala H, Marcu L (2014) Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications. J Biomed Opt 19(6):066004CrossRefGoogle Scholar
  18. 18.
    Yankelevich DR, Ma D, Liu J, Sun Y, Sun Y, Bec J, Elson DS, Marcu L (2014) Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging. Rev Sci Instrum 85:034303CrossRefGoogle Scholar
  19. 19.
    Liu J, Sun Y, Qi JY, Marcu L (2012) A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion. Phys Med Biol 57:843–865CrossRefGoogle Scholar
  20. 20.
    Butte PV, Pikul BK, Hever A, Yong WH, Black KL, Marcu L (2005) Diagnosis of meningioma by time resolved fluorescence spectroscopy. J Biomed Opt 10(6):064026-1–064026-9CrossRefGoogle Scholar
  21. 21.
    Sun YH, Hatami N, Yee M, Elson DS, Gorin F, Schrot RJ, Marcu L (2010) Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 15(5):056022CrossRefGoogle Scholar
  22. 22.
    Butte PV, Mamelak AN, Nuno M, Bannykh SI, Black KL, Marcu L (2012) Fluorescence lifetime spectroscopy for guided therapy of brain tumors. NeuroImage 54:125–135CrossRefGoogle Scholar
  23. 23.
    McCreery RL (2005) Raman spectroscopy for chemical analysis, vol 225. Wiley, New YorkGoogle Scholar
  24. 24.
    Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep 4:620. doi:10.1038/bonekey.2014.115 CrossRefGoogle Scholar
  25. 25.
    Bergner N, Bocklitz T, Romeike BFM, Reichartd R, Kalff R, Krafft C, Popp J (2012) Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemometr Intell Lab Syst 117:224–232CrossRefGoogle Scholar
  26. 26.
    Wood BR, Caspers P, Puppels GJ, Pandiancherri S, McNaughton D (2007) Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387:1691–16703CrossRefGoogle Scholar
  27. 27.
    Huang Z, Zeng H, Hamzavi I, McLean DI, Lui H (2001) Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements. Opt Lett 26:1782–1784CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Dochow
    • 1
  • Dinglong Ma
    • 2
  • Ines Latka
    • 1
  • Thomas Bocklitz
    • 1
  • Brad Hartl
    • 2
  • Julien Bec
    • 2
  • Hussain Fatakdawala
    • 2
  • Eric Marple
    • 4
  • Kirk Urmey
    • 4
  • Sebastian Wachsmann-Hogiu
    • 3
  • Michael Schmitt
    • 1
  • Laura Marcu
    • 2
  • Jürgen Popp
    • 1
    • 5
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Department of Biomedical EngineeringUniversity of California, DavisDavisUSA
  3. 3.Department of Pathology and Laboratory Medicine and Center for BiophotonicsUniversity of California, DavisSacramentoUSA
  4. 4.EmVision LCCLoxahatcheeUSA
  5. 5.Leibniz Institute of Photonic Technology Jena e.V.JenaGermany

Personalised recommendations