Analytical and Bioanalytical Chemistry

, Volume 407, Issue 19, pp 5673–5684 | Cite as

MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum)

  • Roberto Gamboa-Becerra
  • Enrique Ramírez-Chávez
  • Jorge Molina-Torres
  • Robert Winkler
Research Paper

Abstract

In cartography, the combination of colour and contour lines is used to express a three-dimensional landscape on a two-dimensional map. We transferred this concept to the analysis of mass spectrometry imaging (MSI) data and developed a collection of R scripts for the efficient evaluation of .imzML archives in a four-step strategy: (1) calculation of the density distribution of mass-to-charge ratio (m/z) signals in the .imzML file and assembling of a pseudo-master spectrum with peak list, (2) automated generation of mass images for a defined scan range and subsequent visual inspection, (3) visualisation of individual ion distributions and export of relevant .mzML spectra and (4) creation of overlay graphics of ion images and photographies. The use of a Hue-Chroma-Luminance (HCL) colour model in MSI graphics takes into account the human perception for colours and supports the correct evaluation of signal intensities. Further, readers with colour blindness are supported. Contour maps promote the visual recognition of patterns in MSI data, which is particularly useful for noisy data sets. We demonstrate the scalability of MSI.R scripts by running them on different systems: on a personal computer, on Amazon Web Services (AWS) instances and on an institutional cluster. By implementing a parallel computing strategy, the execution speed for .imzML data scanning with image generation could be improved by more than an order of magnitude. Applying our MSI.R scripts (http://www.bioprocess.org/MSI.R) to low-temperature plasma (LTP)-MSI data shows the localisation of volatile and semi-volatile compounds in the cross-cut of a chilli (Capsicum annuum) fruit. The subsequent identification of compounds by gas and liquid chromatography coupled to mass spectrometry (GC-MS, LC-MS) proves that LTP-MSI enables the direct measurement of volatile organic compound (VOC) distributions from biological tissues.

Keywords

Mass spectrometry imaging Ambient ionisation Chilli Volatiles Semi-volatiles Low-temperature plasma 

Supplementary material

216_2015_8744_MOESM1_ESM.pdf (783 kb)
Supplemental Fig. S1Mass image for a signal with m/z 820.526 ± 0.001 from a high-resolution Fourier-Transform-MSI dataset of rat testis. (PDF 783 kb)

References

  1. 1.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  2. 2.
    Reyzer ML, Caprioli RM (2007) MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11:29–35. doi:10.1016/j.cbpa.2006.11.035 CrossRefGoogle Scholar
  3. 3.
    Sparvero LJ, Amoscato AA, Dixon CE, Long JB, Kochanek PM, Pitt BR, Bayir H, Kagan VE (2012) Mapping of phospholipids by MALDI Imaging (MALDI-MSI): realities and expectations. Chem Phys Lipids 165:545–562. doi:10.1016/j.chemphyslip.2012.06.001 CrossRefGoogle Scholar
  4. 4.
    Shroff R, Vergara F, Muck A, Svatos A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 105:6196–6201. doi:10.1073/pnas.0711730105 CrossRefGoogle Scholar
  5. 5.
    Rowan DD (2011) Volatile metabolites. Metabolites 1:41–63. doi:10.3390/metabo1010041 CrossRefGoogle Scholar
  6. 6.
    Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811. doi:10.1126/science.1118510 CrossRefGoogle Scholar
  7. 7.
    Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272. doi:10.1016/j.tplants.2008.03.005 CrossRefGoogle Scholar
  8. 8.
    Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280. doi:10.1016/0031-9422(93)85502-I CrossRefGoogle Scholar
  9. 9.
    Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141 CrossRefGoogle Scholar
  10. 10.
    Maldonado-Torres M, López-Hernández JF, Jiménez-Sandoval P, Winkler R (2014) “Plug and Play” assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system. J Proteome 102:60–65. doi:10.1016/j.jprot.2014.03.003 CrossRefGoogle Scholar
  11. 11.
    Römpp A, Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Stöckli M, Spengler B (2011) imzML: imaging mass spectrometry markup language: a common data format for mass spectrometry imaging. Methods Mol Biol 696:205–224. doi:10.1007/978-1-60761-987-1_12 CrossRefGoogle Scholar
  12. 12.
    Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprévote O, Desbenoit N, Robbe M-F, Stoeckli M, Spengler B, Römpp A (2012) imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteomics 75:5106–5110. doi:10.1016/j.jprot.2012.07.026 CrossRefGoogle Scholar
  13. 13.
    Mirion—a software package for automatic processing of mass spectrometric images. Springer. doi: 10.1007/s13361-013-0667-0
  14. 14.
    Parry RM, Galhena AS, Gamage CM, Bennett RV, Wang MD, Fernández FM (2013) omniSpect: an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images. J Am Soc Mass Spectrom 24:646–649. doi:10.1007/s13361-012-0572-y CrossRefGoogle Scholar
  15. 15.
    Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24:718–721. doi:10.1007/s13361-013-0607-z CrossRefGoogle Scholar
  16. 16.
    McDonnell LA, van Remoortere A, de Velde N, van Zeijl RJM, Deelder AM (2010) Imaging mass spectrometry data reduction: automated feature identification and extraction. J Am Soc Mass Spectrom 21:1969–1978. doi:10.1016/j.jasms.2010.08.008 CrossRefGoogle Scholar
  17. 17.
    Klinkert I, Chughtai K, Ellis SR, Heeren RMA. Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int J Mass Spectrom. doi: 10.1016/j.ijms.2013.12.012
  18. 18.
    Smith DF, Schulz C, Konijnenburg M, Kilic M, Heeren RMA (2014) Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization. Anal Bioanal Chem 407:2321–2327. doi:10.1007/s00216-014-8210-0 CrossRefGoogle Scholar
  19. 19.
    Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, Stolowitz M, Vitek O (2015) Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics. doi:10.1093/bioinformatics/btv146 Google Scholar
  20. 20.
    Race AM, Styles IB, Bunch J (2012) Inclusive sharing of mass spectrometry imaging data requires a converter for all. J Proteomics 75:5111–5112. doi:10.1016/j.jprot.2012.05.035 CrossRefGoogle Scholar
  21. 21.
    Martínez-Jarquín S, Winkler R (2013) Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules. Rapid Commun Mass Spectrom 27:629–634. doi:10.1002/rcm.6494 CrossRefGoogle Scholar
  22. 22.
    Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271. doi:10.1093/bioinformatics/bts447 CrossRefGoogle Scholar
  23. 23.
    Winkler R (2014) MASSyPup—an “Out of the Box” solution for the analysis of mass spectrometry data. J Mass Spectrom 49:37–42. doi:10.1002/jms.3314 CrossRefGoogle Scholar
  24. 24.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. doi:10.1002/jms.1777 CrossRefGoogle Scholar
  25. 25.
    Strohalm M, Kavan D, Novák P, Volný M, Havlícek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651. doi:10.1021/ac100818g CrossRefGoogle Scholar
  26. 26.
    Winkler R (2015) SpiderMass: semantic database creation and tripartite metabolite identification strategy. J Mass Spectrom 50:538–541. doi:10.1002/jms.3559 CrossRefGoogle Scholar
  27. 27.
    Moreno E, Fita A, González-Mas MC, Rodríguez-Burruezo A (2012) HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Sci Hortic 135:87–97. doi:10.1016/j.scienta.2011.12.001 CrossRefGoogle Scholar
  28. 28.
    Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinf 9:163. doi:10.1186/1471-2105-9-163 CrossRefGoogle Scholar
  29. 29.
    Race AM, Bunch J (2015) Optimisation of colour schemes to accurately display mass spectrometry imaging data based on human colour perception. Anal Bioanal Chem 1–8. doi: 10.1007/s00216-014-8404-5
  30. 30.
    Zeileis A, Hornik K, Murrell P (2009) Escaping RGBland: selecting colors for statistical graphics. Comput Stat Data Anal 53:3259–3270. doi:10.1016/j.csda.2008.11.033 CrossRefGoogle Scholar
  31. 31.
    Stauffer R, Mayr GJ, Dabernig M, Zeileis A (2014) Somewhere over the rainbow: how to make effective use of colors in meteorological visualizations. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00155.1 Google Scholar
  32. 32.
    Ihaka R, Murrell P, Hornik K, Fisher JC, Zeileis A (2013) Colorspace: color space manipulationGoogle Scholar
  33. 33.
    Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, Mansmann U (2009) State of the art in parallel computing with R. J Stat Softw 31:1–27Google Scholar
  34. 34.
    Bogusz Junior S, Tavares AM, Filho JT, Zini CA, Godoy HT (2012) Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Res Int 48:98–107. doi:10.1016/j.foodres.2012.02.005 CrossRefGoogle Scholar
  35. 35.
    Forero MD, Quijano CE, Pino JA (2009) Volatile compounds of chile pepper (Capsicum annuum L. var. glabriusculum) at two ripening stages. Flavour Fragr J 24:25–30. doi:10.1002/ffj.1913 CrossRefGoogle Scholar
  36. 36.
    Campbell D, Dalgleish J, Cotte-Rodriguez I, Maeno S, Graham Cooks R (2013) Chemical analysis and chemical imaging of fragrances and volatile compounds by low-temperature plasma ionization mass spectrometry. Rapid Commun Mass Spectrom 27:1828–1836. doi:10.1002/rcm.6632 CrossRefGoogle Scholar
  37. 37.
    Taira S, Shimma S, Osaka I, Kaneko D, Ichiyanagi Y, Ikeda R, Konishi-Kawamura Y, Zhu S, Tsuneyama K, Komatsu K (2012) Mass spectrometry imaging of the capsaicin localization in the capsicum fruits. Int J Biotechnol Wellness Ind 1:61–66Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roberto Gamboa-Becerra
    • 1
  • Enrique Ramírez-Chávez
    • 1
  • Jorge Molina-Torres
    • 1
  • Robert Winkler
    • 1
  1. 1.Department of Biotechnology and BiochemistryCINVESTAV Unidad IrapuatoIrapuatoMexico

Personalised recommendations