Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8333–8341 | Cite as

Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis

  • Sandra Kloß
  • Björn Lorenz
  • Stefan Dees
  • Ines Labugger
  • Petra Rösch
  • Jürgen Popp
Research Paper
Part of the following topical collections:
  1. Raman4Clinics

Abstract

Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·107 to 6·104 CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly.

Graphical Abstract

Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.

Keywords

Raman spectroscopy Single-cell pathogen identification Sputum Isolation 

References

  1. 1.
    Engel C, Brunkhorst F, Bone H-G, Brunkhorst R, Gerlach H, Grond S, Gruendling M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4):606–618CrossRefGoogle Scholar
  2. 2.
    (WHO) WHO (2014) Global Health Estimates 2014. World Health Organization (WHO);. http://www.who.int/healthinfo/global_burden_disease/en/. Accessed 23.01.2015
  3. 3.
    Remington LT, Sligl WI (2014) Community-acquired pneumonia. Curr Opin Pulm Med 20(3):215–224CrossRefGoogle Scholar
  4. 4.
    Barbier F, Andremont A, Wolff M, Bouadma L (2013) Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med 19(3):216–228CrossRefGoogle Scholar
  5. 5.
    Lung M, Codina G (2012) Molecular diagnosis in HAP/VAP. Curr Opin Crit Care 18(5):487–494CrossRefGoogle Scholar
  6. 6.
    Bogaerts P, Hamels S, de Mendonca R, Huang T-D, Roisin S, Remacle J, Markine-Goriaynoff N, de Longueville F, Plüster W, Denis O, Glupczynski Y (2013) Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother 68(2):340–347CrossRefGoogle Scholar
  7. 7.
    Endimiani A, Hujer KM, Hujer AM, Kurz S, Jacobs MR, Perlin DS, Bonomo RA (2011) Are we ready for novel detection methods to treat respiratory pathogens in hospital-acquired pneumonia? Clin Infect Dis 52(suppl 4):S373–S383CrossRefGoogle Scholar
  8. 8.
    Wu D, Hou C, Li Y, Zhao Z, Liu J, Lu X, Shang X, Xin Y (2014) Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med 14(1):179CrossRefGoogle Scholar
  9. 9.
    Aydemir O, Aydemir Y, Ozdemir M (2014) The role of multiplex PCR test in identification of bacterial pathogens in lower respiratory tract infections. Pak J Med Sci 30(5):1011–1016Google Scholar
  10. 10.
    Kusić D, Kampe B, Rösch P, Popp J (2014) Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189CrossRefGoogle Scholar
  11. 11.
    Stöckel S, Meisel S, Elschner M, Melzer F, Rösch P, Popp J (2015) Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff. Anal Bioanal Chem 407(4):787–794Google Scholar
  12. 12.
    Meisel S, Stöckel S, Rösch P, Popp J (2014) Identification of meat-associated pathogens via Raman microspectroscopy. Food Micorobiol 38:36–43CrossRefGoogle Scholar
  13. 13.
    Kloß S, Kampe B, Sachse S, Rösch P, Straube E, Pfister W, Kiehntopf M, Popp J (2013) Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem 85(20):9610–9616CrossRefGoogle Scholar
  14. 14.
    Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, Popp J (2009) Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy. J Biophotonics 2(1-2):70–80CrossRefGoogle Scholar
  15. 15.
    Kloß S, Rösch P, Pfister W, Kiehntopf M, Popp J (2015) Toward culture-free Raman spectroscopic identification of pathogens in ascitic fluid. Anal Chem 87(2):937–943CrossRefGoogle Scholar
  16. 16.
    Krause M, Radt B, Rösch P, Popp J (2007) The investigation of single bacteria by means of fluorescence staining and Raman spectroscopy. J Raman Spectrosc 38(4):369–372CrossRefGoogle Scholar
  17. 17.
    Krause M, Rösch P, Radt B, Popp J (2008) Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy. Anal Chem 80(22):8568–8575CrossRefGoogle Scholar
  18. 18.
    Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, Rösch P, Weber K, Popp J (2013) Isolation and enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. ChemPhysChem 14(15):3600–3605CrossRefGoogle Scholar
  19. 19.
    Meisel S, Stöckel S, Elschner M, Rösch P, Popp J (2011) Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst 136(23):4997–5005CrossRefGoogle Scholar
  20. 20.
    Wu X, Chen J, Li X, Zhao Y, Zughaier SM (2014) Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Nanomedicine : Nanotechnol Biol Med 10(8):1863–1870CrossRefGoogle Scholar
  21. 21.
    Bosch A, Miñán A, Vescina C, Degrossi J, Gatti B, Montanaro P, Messina M, Franco M, Vay C, Schmitt J, Naumann D, Yantorno O (2008) Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol 46(8):2535–2546CrossRefGoogle Scholar
  22. 22.
    Rusciano G, Capriglione P, Pesce G, Abete P, Carnovale V, Sasso A (2013) Raman spectroscopy as a new tool for early detection of bacteria in patients with cystic fibrosis. Laser Phys Lett 10(7):075603CrossRefGoogle Scholar
  23. 23.
    R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  24. 24.
    Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models? Anal Chim Acta 704(1-2):47–56CrossRefGoogle Scholar
  25. 25.
    Morhác M, Kliman J, Matoušek V, Veselský M, Turzo I (1997) Background elimination methods for multidimensional coincidence γ-ray spectra. Nucl Inst Methods Phys Res Sect A 401(1):113–132CrossRefGoogle Scholar
  26. 26.
    Zhang D, Jallad KN, Ben-Amotz D (2001) Stripping of cosmic spike spectral artifacts using a new upper-bound spectrum algorithm. Appl Spectrosc 55(11):1523–1531CrossRefGoogle Scholar
  27. 27.
    Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J (2011) Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem 225(6-7):753–764Google Scholar
  28. 28.
    Bocklitz T, Putsche M, Stüber C, Käs J, Niendorf A, Rösch P, Popp J (2009) A comprehensive study of classification methods for medical diagnosis. J Raman Spectrosc 40(12):1759–1765CrossRefGoogle Scholar
  29. 29.
    Schmid U, Rösch P, Krause M, Harz M, Popp J, Baumann K (2009) Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemom Intell Lab Syst 96(2):159–171CrossRefGoogle Scholar
  30. 30.
    Münchberg U, Rösch P, Bauer M, Popp J (2014) Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal Bioanal Chem 406(13):3041–3050CrossRefGoogle Scholar
  31. 31.
    Schröder U-C, Ramoji A, Glaser U, Sachse S, Leiterer C, Csaki A, Hübner U, Fritzsche W, Pfister W, Bauer M, Popp J, Neugebauer U (2013) Combined dielectrophoresis—Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem 85(22):10717–10724CrossRefGoogle Scholar
  32. 32.
    Stöckel S, Meisel S, Elschner M, Rösch P, Popp J (2012) Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Anal Chem 84(22):9873–9880CrossRefGoogle Scholar
  33. 33.
    Stöckel S, Meisel S, Elschner M, Roesch P, Popp J (2012) Raman spectroscopic detection of anthrax endospores in powder samples. Angew Chem Int Ed 51(22):5339–5342, S5339/5331-S5339/5339 CrossRefGoogle Scholar
  34. 34.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  35. 35.
    Nicholas B, Djukanovic R (2009) Induced sputum: a window to lung pathology. Biochem Soc Trans 37(4):868–872CrossRefGoogle Scholar
  36. 36.
    Rubin BK (2014) Secretion properties, clearance, and therapy in airway disease. Transl Respir Med 2:6CrossRefGoogle Scholar
  37. 37.
    Campbell MJ (1970) Tetracycline levels in bronchial secretions. J Clin Pathol 23(5):427–434CrossRefGoogle Scholar
  38. 38.
    Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42(5):493–541CrossRefGoogle Scholar
  39. 39.
    Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Accounts 130(4-6):1249–1260CrossRefGoogle Scholar
  40. 40.
    Harz M, Rösch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J (2005) Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 130(11):1543–1550CrossRefGoogle Scholar
  41. 41.
    Lieberman D, Schlaeffer F, Boldur I, Horowitz S, Friedman MG, Leiononen M, Horovitz O, Manor E, Porath A (1996) Multiple pathogens in adult patients admitted with community-acquired pneumonia: a one year prospective study of 346 consecutive patients. Thorax 51(2):179–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sandra Kloß
    • 1
    • 2
  • Björn Lorenz
    • 1
    • 2
  • Stefan Dees
    • 2
    • 3
  • Ines Labugger
    • 2
    • 3
  • Petra Rösch
    • 1
    • 2
  • Jürgen Popp
    • 1
    • 2
    • 4
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.InfectoGnostics Forschungscampus JenaJenaGermany
  3. 3.Alere Technologies GmbHJenaGermany
  4. 4.Leibniz Institute of Photonic Technology e.V.JenaGermany

Personalised recommendations