Skip to main content

Advertisement

Log in

Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopy was used to investigate how the effect of pre-treatment protocols, with combinations of hydrochloric acid (HCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2), for molar–incisor hypo-mineralisation (MIH) altered the penetration depth of polymer infiltrants (ICON, DMG, Hamburg, Germany). Furthermore, the effect on the structure of the MIH portions of the teeth with treatment is examined using multivariate analysis of spectra. It was found that pre-treatment protocols improved penetration depths. The structure of the MIH portion post-treatment appeared much closer to that of normal enamel suggesting a diminution of protein in the MIH region with treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Simmer J, Fincham A (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6(2):84–108

    Article  CAS  Google Scholar 

  2. Internationale FD (1992) A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J 42(6):411–426

    Google Scholar 

  3. Jalevik B, Klingberg G, Barregard L, Noran JG (2001) The prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Acta Odontol Scand 59(5):255–260

    Article  CAS  Google Scholar 

  4. Kemoli A (2009) Prevalence of molar incisor hypomineralisation in six to eight year-olds in two rural divisions in Kenya. East Afr Med J 85(10):514–520

    Article  Google Scholar 

  5. Kuscu OO, Caglar E, Aslan S, Durmusoglu E, Karademir A, Sandalli N (2009) The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm‐green energy island. Int J Paediatr Dent 19(3):176–185

    Article  Google Scholar 

  6. Lygidakis N, Dimou G, Briseniou E (2008) Molar-incisor-hypomineralisation (MIH). Retrospective clinical study in Greek children. I. Prevalence and defect characteristics. Eur Arch Paediatr Dent 9(4):200

    Article  CAS  Google Scholar 

  7. Mahoney E, Morrison D (2009) The prevalence of molar-incisor hypomineralisation (MIH) in Wainuiomata children. N Z Dent J 105(4):121

    Google Scholar 

  8. Parikh D, Ganesh M, Bhaskar V (2012) Prevalence and characteristics of molar incisor hypomineralisation (MIH) in the child population residing in Gandhinagar, Gujarat, India. Eur Arch Paediatr Dent 13(1):21–26

    Article  CAS  Google Scholar 

  9. Calderara P, Gerthoux PM, Mocarelli P, Lukinmaa P-L, Tramacere P, Alaluusua S (2005) The prevalence of molar incisor hypomineralisation (MIH) in a group of Italian school children. Eur Arch Paediatr Dent 6(2):79

    CAS  Google Scholar 

  10. Cho SY, Ki Y, Chu V (2008) Molar incisor hypomineralization in Hong Kong Chinese children. Int J Paediatr Dent 18(5):348–352

    Article  Google Scholar 

  11. Costa‐Silva D, Maria C, Jeremias F, Souza D, Feltrin J, De Cassia Loiola Cordeiro R, Santos‐Pinto L, Cilense Zuanon AC (2010) Molar incisor hypomineralization: prevalence, severity and clinical consequences in Brazilian children. Int J Paediatr Dent 20(6):426–434

    Article  Google Scholar 

  12. Jalevik B (2001) Enamel hypomineralization in permanent first molars. A clinical, histo-morphological and biochemical study. Swed Dent J Suppl 149:1

    Google Scholar 

  13. Fearne J, Anderson P, Davis G (2004) 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J 196(10):634–638

    Article  CAS  Google Scholar 

  14. Farah RA, Monk BC, Swain MV, Drummond BK (2010) Protein content of molar–incisor hypomineralisation enamel. J Dent 38(7):591–596

    Article  CAS  Google Scholar 

  15. Fraser SJ, Natarajan AK, Clark ASS, Drummond BK, Gordon KC (2015) A Raman spectroscopic study of teeth affected with molar-incisor hypomineralisation. J Raman Spectrosc 46(2):202–210. doi:10.1002/jrs.4635

    Article  CAS  Google Scholar 

  16. Farah R, Swain M, Drummond B, Cook R, Atieh M (2010) Mineral density of hypomineralised enamel. J Dent 38(1):50–58

    Article  CAS  Google Scholar 

  17. Mahoney EK, Rohanizadeh R, Ismail F, Kilpatrick N, Swain M (2004) Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25(20):5091–5100

    Article  CAS  Google Scholar 

  18. Jalevik B, Odelius H, Dietz W, Noren J (2001) Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol 46(3):239–247

    Article  CAS  Google Scholar 

  19. Xie Z, Kilpatrick NM, Swain MV, Munroe PR, Hoffman M (2008) Transmission electron microscope characterisation of molar-incisor-hypomineralisation. J Mater Sci Mater Med 19(10):3187–3192

    Article  CAS  Google Scholar 

  20. Mangum J, Crombie F, Kilpatrick N, Manton D, Hubbard M (2010) Surface integrity governs the proteome of hypomineralized enamel. J Dent Res 89(10):1160–1165

    Article  CAS  Google Scholar 

  21. William V, Burrow MF, Palamara JE, Messer LB (2006) Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems. Paediatr Dent 28(3):233–241

    Google Scholar 

  22. Saroglu I, Aras S, Oztas D (2006) Effect of deproteinization on composite bond strength in hypocalcified amelogenesis imperfecta. Oral Dis 12(3):305–308

    Article  CAS  Google Scholar 

  23. Venezie RD, Vadiakas G, Christensen JR, Wright J (1994) Enamel pretreatment with sodium hypochlorite to enhance bonding in hypocalcified amelogenesis imperfecta: case report and SEM analysis. Paediatr Dent 16:433–436

    CAS  Google Scholar 

  24. Crombie F, Cochrane N, Manton D, Palamara J, Reynolds E (2013) Mineralisation of developmentally hypomineralised human enamel in vitro. Caries Res 47(3):259–263

    Article  CAS  Google Scholar 

  25. Crombie F, Manton D, Palamara J, Reynolds E (2014) Resin infiltration of developmentally hypomineralised enamel. Int J Paediatr Dent 24(1):51–55

    Article  Google Scholar 

  26. Ashtikar M, Matthäus C, Schmitt M, Krafft C, Fahr A, Popp J (2013) Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method. Eur J Pharm Sci 50(5):601–608

    Article  CAS  Google Scholar 

  27. Baldock C, Rintoul L, Keevil S, Pope J, George G (1998) Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Phys Med Biol 43(12):3617

    Article  CAS  Google Scholar 

  28. Balooch G, Marshall G, Marshall S, Warren O, Asif SS, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37(8):1223–1232

    Article  CAS  Google Scholar 

  29. Carter EA, Tam KK, Armstrong RS, Lay PA (2009) Vibrational spectroscopic mapping and imaging of tissues and cells. Biophys Rev 1(2):95–103

    Article  Google Scholar 

  30. Dusevich V, Xu C, Wang Y, Walker MP, Gorski JP (2012) Identification of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth. Arch Oral Biol 57(12):1585–1594

    Article  CAS  Google Scholar 

  31. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, McLean R, Langridge J, Papadopoulos D (2007) Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci 96(5):1282–1301

    Article  CAS  Google Scholar 

  32. Lademann J, Meinke M, Schanzer S, Richter H, Darvin M, Haag S, Fluhr J, Weigmann HJ, Sterry W, Patzelt A (2012) In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci 34(6):551–559

    Article  CAS  Google Scholar 

  33. Mohanty B, Dadlani D, Mahoney D, Mann A (2012) Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Res 47(1):27–33

    Article  Google Scholar 

  34. Smith G (2012) A Raman spectroscopic study of paint and dairy samples. University of Otago

  35. Wentrup‐Byrne E, Armstrong CA, Armstrong RS, Collins BM (1997) Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J Raman Spectrosc 28(2–3):151–158

    Article  Google Scholar 

  36. Schulze K, Balooch M, Balooch G, Marshall G, Marshall S (2004) Micro‐Raman spectroscopic investigation of dental calcified tissues. J Biomed Mater Res Part A 69(2):286–293

    Article  CAS  Google Scholar 

  37. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259–268

    Article  CAS  Google Scholar 

  38. Nishino M, Yamashita S, Aoba T, Okazaki M, Moriwaki Y (1981) The laser-Raman spectroscopic studies on human-enamel and precipitated carbonate-containing apatites. J Dent Res 60(3):751–755. doi:10.1177/00220345810600031601

    Article  CAS  Google Scholar 

  39. Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single-crystals and human enamel crystallites. J Dent Res 73(11):1703–1710

    CAS  Google Scholar 

  40. Brody RH, Edwards HGM, Pollard AM (2001) Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories. Anal Chim Acta 427(2):223–232. doi:10.1016/s0003-2670(00)01206-x

    Article  CAS  Google Scholar 

  41. Edwards HGM, Williams AC, Farwell DW (1995) Palaeodental studies using FT-Raman spectroscopy. Biospectroscopy 1(1):29–36. doi:10.1002/bspy.350010105

    Article  CAS  Google Scholar 

  42. Xu C, Reed R, Gorski JP, Wang Y, Walker MP (2012) The distribution of carbonate in enamel and its correlation with structure and mechanical properties. J Mater Sci 47(23):8035–8043. doi:10.1007/s10853-012-6693-7

    Article  CAS  Google Scholar 

  43. Kirchner M, Edwards H, Lucy D, Pollard A (1997) Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. J Raman Spectrosc 28(2–3):171–178

    Article  CAS  Google Scholar 

  44. Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482. doi:10.1016/j.bone.2007.12.001

    Article  CAS  Google Scholar 

  45. Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39(6):1236–1243. doi:10.1016/j.bone.2006.06.002

    Article  CAS  Google Scholar 

  46. McCreadie BR, Morris MD, Chen T-C, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39(6):1190–1195. doi:10.1016/j.bone.2006.06.008

    Article  CAS  Google Scholar 

  47. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469(8):2160–2169. doi:10.1007/s11999-010-1692-y

    Article  Google Scholar 

  48. Thomas DB, Fordyce RE, Frew RD, Gordon KC (2007) A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy. J Raman Spectrosc 38(12):1533–1537. doi:10.1002/jrs.1851

    Article  CAS  Google Scholar 

  49. Thomas DB, McGoverin CM, Fordyce RE, Frew RD, Gordon KC (2011) Raman spectroscopy of fossil bioapatite—a proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeogr Palaeoclimatol Palaeoecol 310(1–2):62–70. doi:10.1016/j.palaeo.2011.06.016

    Article  Google Scholar 

  50. Demul FFM, Otto C, Greve J, Arends J, Tenbosch JJ (1988) Calculation of the Raman line broadening on carbonation in synthetic hydroxyapatite. J Raman Spectrosc 19(1):13–21. doi:10.1002/jrs.1250190104

    Article  CAS  Google Scholar 

  51. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481

    Article  CAS  Google Scholar 

  52. Sauer GR, Zunic WB, Durig JR, Wuthier RE (1994) Fourier-transform Raman-spectroscopy of synthetic and biological calcium phosphates. Calcif Tissue Int 54(5):414–420. doi:10.1007/bf00305529

    Article  CAS  Google Scholar 

  53. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28(19):3043–3054. doi:10.1016/j.biomaterials.2007.02.028

    Article  CAS  Google Scholar 

  54. Awonusi A, Morris MD, Tecklenburg MMJ (2007) Carbonate assignment and calibration in the raman spectrum of apatite. Calcif Tissue Int 81(1):46–52. doi:10.1007/s00223-007-9034-0

    Article  CAS  Google Scholar 

  55. Frushour BG, Koenig JL (1975) Raman-scattering of collagen, gelatin, and elastin. Biopolymers 14(2):379–391. doi:10.1002/bip.1975.360140211

    Article  CAS  Google Scholar 

  56. Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23(1):27–31

    Article  CAS  Google Scholar 

  57. Lopes CB, Pinheiro AL, Sathaiah S, Silva NSD, Salgado MA (2007) Infrared laser photobiomodulation (λ 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101

    Article  CAS  Google Scholar 

  58. Paris SA, Dorfer CE, Noren JG, Meyer-Lueckel H (2013) Resin infiltration of hypomineralised enamel in MIH-molars. Paper presented at the IADR General Session, Seattle, Washington

  59. Jalevik B, Dietz W, Noren J (2005) Scanning electron micrograph analysis of hypomineralized enamel in permanent first molars. Int J Paediatr Dent 15(4):233–240

    Article  CAS  Google Scholar 

  60. Iijima Y, Takagi O, Duschner H, Ruben J, Arends J (1998) Influence of nail varnish on the remineralization of enamel single sections assessed by microradiography and confocal laser scanning microscopy. Caries Res 32(5):393–400

    Article  CAS  Google Scholar 

  61. Suga S (1989) Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res 3(2):188–198

    CAS  Google Scholar 

  62. Robinson C, Kirkham J, Brookes S, Shore R (1992) The role of albumin in developing rodent dental enamel: a possible explanation for white spot hypoplasia. J Dent Res 71(6):1270–1274

    Article  CAS  Google Scholar 

  63. Robinson C, Brookes S, Kirkham J, Bonass W, Shore R (1996) Crystal growth in dental enamel: the role of amelogenins and albumin. Adv Dent Res 10(2):173–180

    Article  CAS  Google Scholar 

  64. Yanagisawa T, Miake Y (2003) High-resolution electron microscopy of enamel-crystal demineralization and remineralization in carious lesions. J Electron Microsc 52(6):605–613

    Article  CAS  Google Scholar 

  65. Menanteau J, Gregoire M, Daculsi G, Jans I (1987) In vitro albumin binding on apatite crystals from developing enamel. Bone Miner 3(2):137–141

    CAS  Google Scholar 

  66. Garnett J, Dieppe P (1990) The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J 266:863–868

    CAS  Google Scholar 

  67. Paris S, Meyer-Lueckel H, Colfen H, Kielbassa AM (2007) Resin infiltration of artificial enamel caries lesions with experimental light curing resins. Dent Mater J 26(4):582–588

    Article  Google Scholar 

  68. Shin W, Li X, Schwartz B, Wunder S, Baran G (1993) Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater 9(5):317–324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Arun Natarajan and Sara Fraser would like to acknowledge the University of Otago for postgraduate publishing bursaries.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara J. Fraser or Keith C. Gordon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, A.K., Fraser, S.J., Swain, M.V. et al. Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel. Anal Bioanal Chem 407, 5661–5671 (2015). https://doi.org/10.1007/s00216-015-8742-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8742-y

Keywords