Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry

Abstract

A new analytical method was developed for the detection of alkaloid cyanotoxins in harmful algal blooms. The detection of the nonproteinogenic amino acid β-N-methylamino-l-alanine (BMAA) and two of its conformation isomers, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG), as well as three alkaloid cyanotoxins, anatoxin-a (ANA-a), cylindrospermopsin (CYN), and saxitoxin (STX), is presented. The use of a chemical derivatization with dansyl chloride (DNS) allows easier separation with reversed phase liquid chromatography. Detection with high-resolution mass spectrometry (HRMS) with the Q-Exactive enables high selectivity with specific fragmentation as well as exact mass detection, reducing considerably the possibilities of isobaric interferences. Previous to analysis, a solid phase extraction (SPE) step is used for purification and preconcentration. After DNS derivatization, samples are submitted to ultra high-performance liquid chromatography coupled with heated electrospray ionisation and the Q-Exactive mass spectrometer (UHPLC-HESI-HRMS). With an internal calibration using isotopically-labeled DAB-D3, the method was validated with good linearity (R 2 > 0.998), and method limits of detection and quantification (MLD and MLQ) for target compounds ranged from 0.007 to 0.01 μg L−1 and from 0.02 to 0.04 μg L−1, respectively. Accuracy and within-day/between-days variation coefficients were below 15 %. SPE recovery values ranged between 86 and 103 %, and matrix effects recovery values ranged between 75 and 96 %. The developed analytical method was successfully validated with 12 different lakes samples, and concentrations were found ranging between 0.009 and 0.3 μg L−1 except for STX which was not found in any sample.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Vega A, Bell EA (1967) α-Amino-β-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochemistry 6(5):759–762

    CAS  Article  Google Scholar 

  2. 2.

    Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10:7–20

    CAS  Article  Google Scholar 

  3. 3.

    Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J Ethnopharmacol 106(1):97–104

    Article  Google Scholar 

  4. 4.

    Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci U S A 100(23):13380–13383

    CAS  Article  Google Scholar 

  5. 5.

    Rao SD, Banack SA, Cox PA, Weiss JH (2006) BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp Neurol 201(1):244–252

    CAS  Article  Google Scholar 

  6. 6.

    Lobner D, Piana PMT, Salous AK, Peoples RW (2007) β-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25(2):360–366

    CAS  Article  Google Scholar 

  7. 7.

    Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid (vol 102, pg 5074, 2005). Proc Natl Acad Sci U S A 102(27):9734

    CAS  Google Scholar 

  8. 8.

    Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol Scand 120(4):216–225

    CAS  Article  Google Scholar 

  9. 9.

    Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10(S2):109–117

    CAS  Article  Google Scholar 

  10. 10.

    Jiang LY, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 403(6):1719–1730

    CAS  Article  Google Scholar 

  11. 11.

    Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Hum Exp Toxicol 18(3):168–173

    CAS  Article  Google Scholar 

  12. 12.

    Puschner B, Hoff B, Tor ER (2008) Diagnosis of anatoxin-a poisoning in dogs from North America. J Vet Diagn Invest 20(1):89–92

    Article  Google Scholar 

  13. 13.

    Faassen EJ, Harkema L, Begeman L, Lurling M (2012) First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 60(3):378–384

    CAS  Article  Google Scholar 

  14. 14.

    Chorus I (2012) Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Federal Environment Agency, Germany

    Google Scholar 

  15. 15.

    Falconer IR, Humpage AR (2006) Cyanobacterial (blue-green algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21(4):299–304

    CAS  Article  Google Scholar 

  16. 16.

    Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680

    CAS  Article  Google Scholar 

  17. 17.

    de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He XX, Loftin K, O’Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD (2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ Sci Process Impact 15(11):1979–2003

    Article  Google Scholar 

  18. 18.

    Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18(2):94–103

    CAS  Article  Google Scholar 

  19. 19.

    Shimizu Y (1993) Microalgal metabolites. Chem Rev 93(5):1685–1698

    CAS  Article  Google Scholar 

  20. 20.

    Wiberg G, Stephenson N (1960) Toxicologic studies on paralytic shellfish poison. Toxicol Appl Pharmacol 2(6):607–615

    CAS  Article  Google Scholar 

  21. 21.

    Shimizu Y, Botana L (2000) Seafood and freshwater toxins: pharmacology, physiology, and detection. Marcel Dekker, New York

    Google Scholar 

  22. 22.

    Fitzgerald DJ, Cunliffe DA, Burch MD (1999) Development of health alerts for cyanobacteria and related toxins in drinking water in South Australia. Environ Toxicol 14(1):203–209

    CAS  Article  Google Scholar 

  23. 23.

    Baptista MS, Cianca RCC, Lopes VR, Almeida CMR, Vasconcelos VM (2011) Determination of the non protein amino acid β-N-methylamino-L-alanine in estuarine cyanobacteria by capillary electrophoresis. Toxicon 58(5):410–414

    CAS  Article  Google Scholar 

  24. 24.

    Esterhuizen M, Downing TG (2008) β-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ Saf 71(2):309–313

    CAS  Article  Google Scholar 

  25. 25.

    Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-beta-methylamino-alanine in human tissue. J Chromatogr A 1217(27):4639–4647

    CAS  Article  Google Scholar 

  26. 26.

    Banack SA, Johnson HE, Cheng R, Cox PA (2007) Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 5(4):180–196

    CAS  Article  Google Scholar 

  27. 27.

    Scott PM, Niedzwiadek B, Rawn DFK, Lau BPY (2009) Liquid chromatographic determination of the cyanobacterial toxin β-N-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water. J Food Protect 72(8):1769–1773

    CAS  Google Scholar 

  28. 28.

    Banack SA, Metcalf JS, Spacil Z, Downing TG, Downing S, Long A, Nunn PB, Cox PA (2011) Distinguishing the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) from other diamino acids. Toxicon 57(5):730–738

    CAS  Article  Google Scholar 

  29. 29.

    Faassen EJ, Gillissen F, Lurling M (2012) A comparative study on three analytical methods for the determination of the Neurotoxin BMAA in cyanobacteria. Plos One 7(5):e36667

    CAS  Article  Google Scholar 

  30. 30.

    Al-Sammak MA, Hoagland KD, Snow DD, Cassada D (2013) Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-alpha in environmental samples. Toxicon 76:316–325

    CAS  Article  Google Scholar 

  31. 31.

    Combes A, El Abdellaoui S, Sarazin C, Vial J, Mejean A, Ploux O, Pichon V, Grp B (2013) Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-L-alanine in complex environmental samples. Anal Chim Acta 771:42–49

    CAS  Article  Google Scholar 

  32. 32.

    Rosen J, Hellenas KE (2008) Determination of the neurotoxin BMAA (β-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst 133(12):1785–1789

    CAS  Article  Google Scholar 

  33. 33.

    Kruger T, Monch B, Oppenhauser S, Luckas B (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55(2–3):547–557

    Article  Google Scholar 

  34. 34.

    Spacil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B (2010) Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 135(1):127–132

    CAS  Article  Google Scholar 

  35. 35.

    Esterhuizen-Londt M, Downing S, Downing TG (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37(2):133–138

    CAS  Article  Google Scholar 

  36. 36.

    Christensen SJ, Hemscheidt TK, Trapido-Rosenthal H, Laws EA, Bidigare RR (2012) Detection and quantification of β-N-methylamino-L-alanine in aquatic invertebrates. Limnol Oceanogr Methods 10:891–898

    CAS  Article  Google Scholar 

  37. 37.

    Li AF, Fan H, Ma FF, McCarron P, Thomas K, Tang XH, Quilliam MA (2012) Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 137(5):1210–1219

    CAS  Article  Google Scholar 

  38. 38.

    Salomonsson ML, Hansson A, Bondesson U (2013) Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry. Anal Methods Uk 5(18):4865–4874

    Article  Google Scholar 

  39. 39.

    Fan H, Qiu J, Fan L, Li A (2015) Effects of growth conditions on the production of neurotoxin 2, 4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. Environ Sci Pollut Res 22:5943–5951

  40. 40.

    McCarron P, Logan AC, Giddings SD, Quilliam MA (2014) Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography–tandem mass spectrometry. Aquat Biosyst 10(1):5

    Article  Google Scholar 

  41. 41.

    Cohen SA (2012) Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst 137(9):1991–2005

    CAS  Article  Google Scholar 

  42. 42.

    Faassen EJ, Gillissen F, Zweers HAJ, Lurling M (2009) Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-, γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10:79–84

    CAS  Article  Google Scholar 

  43. 43.

    Glover WB, Liberto CM, McNeil WS, Banack SA, Shipley PR, Murch SJ (2012) Reactivity of β-N-methylamino-L-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry. Anal Chem 84(18):7946–7953

    CAS  Article  Google Scholar 

  44. 44.

    Seiler N (1970) Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal Vol 18:259–337

    CAS  Google Scholar 

  45. 45.

    Simmaco M, De Biase D, Barra D, Bossa F (1990) Automated amino acid analysis using precolumn derivatization with dansylchloride reversed-phase high-performance liquid chromatography. J Chromatogr A 504:129–138

    CAS  Article  Google Scholar 

  46. 46.

    Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 996(1–2):103–113

    CAS  Article  Google Scholar 

  47. 47.

    Guo K, Li L (2009) Differential C-12/C-13-Isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem 81(10):3919–3932

    CAS  Article  Google Scholar 

  48. 48.

    Lin H, Tian YA, Zhang ZJ, Wu LL, Chen Y (2010) Quantification of piperazine phosphate in human plasma by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry employing precolumn derivatization with dansyl chloride. Anal Chim Acta 664(1):40–48

    CAS  Article  Google Scholar 

  49. 49.

    Santa T (2011) Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr: BMC 25(1–2):1–10

    CAS  Article  Google Scholar 

  50. 50.

    Scientific TF (2012) Operating manual. In: Q Exactive ™, vol Revision C - 1288120

  51. 51.

    Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L (2009) Quantitative–qualitative data acquisition using a benchtop orbitrap mass spectrometer. J Am Soc Mass Spectrom 20(8):1441–1450

    CAS  Article  Google Scholar 

  52. 52.

    Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015

  53. 53.

    Fedorova G, Randak T, Lindberg RH, Grabic R (2013) Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom 27(15):1751–1762

    CAS  Article  Google Scholar 

  54. 54.

    Solliec M, Roy-Lachapelle A, Sauvé S (2015) Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. Anal Chim Acta 853:415–424

    CAS  Article  Google Scholar 

  55. 55.

    Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauvé S (2015) High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer. Talanta 132:836–844

    CAS  Article  Google Scholar 

  56. 56.

    Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    CAS  Article  Google Scholar 

  57. 57.

    Meriluoto JA, Spoof LE (2008) Cyanotoxins: sampling, sample processing and toxin uptake. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: State of the science and research needs. Springer, New York, pp 483–499

  58. 58.

    van Apeldoorn ME, Van Egmond HP, Speijers GJ, Bakker GJ (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51(1):7–60

    Article  Google Scholar 

  59. 59.

    Nicholson BC, Burch MD (2001) Evaluation of analytical methods for detection and quantification of cyanotoxins in relation to Australian drinking water guidelines. National Health and Medical Research Council of Australia, Canberra

  60. 60.

    Li AF, Tian ZJ, Li J, Yu RC, Banack SA, Wang ZY (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55(5):947–953

    CAS  Article  Google Scholar 

  61. 61.

    Zhang Y, Hao Z, Kellmann M, Huhmer A (2012) HR/AM targeted peptide quantitation on a Q Exactive MS: a unique combination of high selectivity, sensitivity, and throughput. ed.C. Thermo Fisher Scientific, ch.12

  62. 62.

    Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2010) Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): “Where is the crossover point?”. Anal Chim Acta 673(1):60–72

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The Fond de Recherche Québec Nature et technologies (FQRNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC) are acknowledged for financial support. Marc Sinotte and Christian Deblois from the Ministère du Développement Durable, de l’Environnement, et de lutte aux changements climatiques, (MDDELCC—The province of Québec Ministry of the Environment) are acknowledged for providing the samples used in this project and for their scientific support. We thank Thermo Fisher Scientific and Phytronix Technologies for their support. We also thank Paul B. Fayad and Sung Vo Duy for their technical help and scientific support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sébastien Sauvé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 227 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy-Lachapelle, A., Solliec, M. & Sauvé, S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 407, 5487–5501 (2015). https://doi.org/10.1007/s00216-015-8722-2

Download citation

Keywords

  • Water
  • Organic compounds/trace organic compounds
  • Mass spectrometry
  • Blue-green algae