Analytical and Bioanalytical Chemistry

, Volume 407, Issue 18, pp 5487–5501 | Cite as

Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry

  • Audrey Roy-Lachapelle
  • Morgan Solliec
  • Sébastien Sauvé
Research Paper

Abstract

A new analytical method was developed for the detection of alkaloid cyanotoxins in harmful algal blooms. The detection of the nonproteinogenic amino acid β-N-methylamino-l-alanine (BMAA) and two of its conformation isomers, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG), as well as three alkaloid cyanotoxins, anatoxin-a (ANA-a), cylindrospermopsin (CYN), and saxitoxin (STX), is presented. The use of a chemical derivatization with dansyl chloride (DNS) allows easier separation with reversed phase liquid chromatography. Detection with high-resolution mass spectrometry (HRMS) with the Q-Exactive enables high selectivity with specific fragmentation as well as exact mass detection, reducing considerably the possibilities of isobaric interferences. Previous to analysis, a solid phase extraction (SPE) step is used for purification and preconcentration. After DNS derivatization, samples are submitted to ultra high-performance liquid chromatography coupled with heated electrospray ionisation and the Q-Exactive mass spectrometer (UHPLC-HESI-HRMS). With an internal calibration using isotopically-labeled DAB-D3, the method was validated with good linearity (R2 > 0.998), and method limits of detection and quantification (MLD and MLQ) for target compounds ranged from 0.007 to 0.01 μg L−1 and from 0.02 to 0.04 μg L−1, respectively. Accuracy and within-day/between-days variation coefficients were below 15 %. SPE recovery values ranged between 86 and 103 %, and matrix effects recovery values ranged between 75 and 96 %. The developed analytical method was successfully validated with 12 different lakes samples, and concentrations were found ranging between 0.009 and 0.3 μg L−1 except for STX which was not found in any sample.

Keywords

Water Organic compounds/trace organic compounds Mass spectrometry Blue-green algae 

Supplementary material

216_2015_8722_MOESM1_ESM.pdf (228 kb)
ESM 1(PDF 227 kb)

References

  1. 1.
    Vega A, Bell EA (1967) α-Amino-β-methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochemistry 6(5):759–762CrossRefGoogle Scholar
  2. 2.
    Bradley WG, Mash DC (2009) Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler 10:7–20CrossRefGoogle Scholar
  3. 3.
    Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J Ethnopharmacol 106(1):97–104CrossRefGoogle Scholar
  4. 4.
    Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci U S A 100(23):13380–13383CrossRefGoogle Scholar
  5. 5.
    Rao SD, Banack SA, Cox PA, Weiss JH (2006) BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp Neurol 201(1):244–252CrossRefGoogle Scholar
  6. 6.
    Lobner D, Piana PMT, Salous AK, Peoples RW (2007) β-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25(2):360–366CrossRefGoogle Scholar
  7. 7.
    Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid (vol 102, pg 5074, 2005). Proc Natl Acad Sci U S A 102(27):9734Google Scholar
  8. 8.
    Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol Scand 120(4):216–225CrossRefGoogle Scholar
  9. 9.
    Cox PA, Richer R, Metcalf JS, Banack SA, Codd GA, Bradley WG (2009) Cyanobacteria and BMAA exposure from desert dust: a possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10(S2):109–117CrossRefGoogle Scholar
  10. 10.
    Jiang LY, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 403(6):1719–1730CrossRefGoogle Scholar
  11. 11.
    Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Hum Exp Toxicol 18(3):168–173CrossRefGoogle Scholar
  12. 12.
    Puschner B, Hoff B, Tor ER (2008) Diagnosis of anatoxin-a poisoning in dogs from North America. J Vet Diagn Invest 20(1):89–92CrossRefGoogle Scholar
  13. 13.
    Faassen EJ, Harkema L, Begeman L, Lurling M (2012) First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 60(3):378–384CrossRefGoogle Scholar
  14. 14.
    Chorus I (2012) Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Federal Environment Agency, GermanyGoogle Scholar
  15. 15.
    Falconer IR, Humpage AR (2006) Cyanobacterial (blue-green algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21(4):299–304CrossRefGoogle Scholar
  16. 16.
    Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680CrossRefGoogle Scholar
  17. 17.
    de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He XX, Loftin K, O’Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD (2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ Sci Process Impact 15(11):1979–2003CrossRefGoogle Scholar
  18. 18.
    Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18(2):94–103CrossRefGoogle Scholar
  19. 19.
    Shimizu Y (1993) Microalgal metabolites. Chem Rev 93(5):1685–1698CrossRefGoogle Scholar
  20. 20.
    Wiberg G, Stephenson N (1960) Toxicologic studies on paralytic shellfish poison. Toxicol Appl Pharmacol 2(6):607–615CrossRefGoogle Scholar
  21. 21.
    Shimizu Y, Botana L (2000) Seafood and freshwater toxins: pharmacology, physiology, and detection. Marcel Dekker, New YorkGoogle Scholar
  22. 22.
    Fitzgerald DJ, Cunliffe DA, Burch MD (1999) Development of health alerts for cyanobacteria and related toxins in drinking water in South Australia. Environ Toxicol 14(1):203–209CrossRefGoogle Scholar
  23. 23.
    Baptista MS, Cianca RCC, Lopes VR, Almeida CMR, Vasconcelos VM (2011) Determination of the non protein amino acid β-N-methylamino-L-alanine in estuarine cyanobacteria by capillary electrophoresis. Toxicon 58(5):410–414CrossRefGoogle Scholar
  24. 24.
    Esterhuizen M, Downing TG (2008) β-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ Saf 71(2):309–313CrossRefGoogle Scholar
  25. 25.
    Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-beta-methylamino-alanine in human tissue. J Chromatogr A 1217(27):4639–4647CrossRefGoogle Scholar
  26. 26.
    Banack SA, Johnson HE, Cheng R, Cox PA (2007) Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 5(4):180–196CrossRefGoogle Scholar
  27. 27.
    Scott PM, Niedzwiadek B, Rawn DFK, Lau BPY (2009) Liquid chromatographic determination of the cyanobacterial toxin β-N-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water. J Food Protect 72(8):1769–1773Google Scholar
  28. 28.
    Banack SA, Metcalf JS, Spacil Z, Downing TG, Downing S, Long A, Nunn PB, Cox PA (2011) Distinguishing the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) from other diamino acids. Toxicon 57(5):730–738CrossRefGoogle Scholar
  29. 29.
    Faassen EJ, Gillissen F, Lurling M (2012) A comparative study on three analytical methods for the determination of the Neurotoxin BMAA in cyanobacteria. Plos One 7(5):e36667CrossRefGoogle Scholar
  30. 30.
    Al-Sammak MA, Hoagland KD, Snow DD, Cassada D (2013) Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-alpha in environmental samples. Toxicon 76:316–325CrossRefGoogle Scholar
  31. 31.
    Combes A, El Abdellaoui S, Sarazin C, Vial J, Mejean A, Ploux O, Pichon V, Grp B (2013) Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-L-alanine in complex environmental samples. Anal Chim Acta 771:42–49CrossRefGoogle Scholar
  32. 32.
    Rosen J, Hellenas KE (2008) Determination of the neurotoxin BMAA (β-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst 133(12):1785–1789CrossRefGoogle Scholar
  33. 33.
    Kruger T, Monch B, Oppenhauser S, Luckas B (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55(2–3):547–557CrossRefGoogle Scholar
  34. 34.
    Spacil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B (2010) Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 135(1):127–132CrossRefGoogle Scholar
  35. 35.
    Esterhuizen-Londt M, Downing S, Downing TG (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37(2):133–138CrossRefGoogle Scholar
  36. 36.
    Christensen SJ, Hemscheidt TK, Trapido-Rosenthal H, Laws EA, Bidigare RR (2012) Detection and quantification of β-N-methylamino-L-alanine in aquatic invertebrates. Limnol Oceanogr Methods 10:891–898CrossRefGoogle Scholar
  37. 37.
    Li AF, Fan H, Ma FF, McCarron P, Thomas K, Tang XH, Quilliam MA (2012) Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 137(5):1210–1219CrossRefGoogle Scholar
  38. 38.
    Salomonsson ML, Hansson A, Bondesson U (2013) Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry. Anal Methods Uk 5(18):4865–4874CrossRefGoogle Scholar
  39. 39.
    Fan H, Qiu J, Fan L, Li A (2015) Effects of growth conditions on the production of neurotoxin 2, 4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. Environ Sci Pollut Res 22:5943–5951Google Scholar
  40. 40.
    McCarron P, Logan AC, Giddings SD, Quilliam MA (2014) Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography–tandem mass spectrometry. Aquat Biosyst 10(1):5CrossRefGoogle Scholar
  41. 41.
    Cohen SA (2012) Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst 137(9):1991–2005CrossRefGoogle Scholar
  42. 42.
    Faassen EJ, Gillissen F, Zweers HAJ, Lurling M (2009) Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-, γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10:79–84CrossRefGoogle Scholar
  43. 43.
    Glover WB, Liberto CM, McNeil WS, Banack SA, Shipley PR, Murch SJ (2012) Reactivity of β-N-methylamino-L-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry. Anal Chem 84(18):7946–7953CrossRefGoogle Scholar
  44. 44.
    Seiler N (1970) Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal Vol 18:259–337Google Scholar
  45. 45.
    Simmaco M, De Biase D, Barra D, Bossa F (1990) Automated amino acid analysis using precolumn derivatization with dansylchloride reversed-phase high-performance liquid chromatography. J Chromatogr A 504:129–138CrossRefGoogle Scholar
  46. 46.
    Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 996(1–2):103–113CrossRefGoogle Scholar
  47. 47.
    Guo K, Li L (2009) Differential C-12/C-13-Isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem 81(10):3919–3932CrossRefGoogle Scholar
  48. 48.
    Lin H, Tian YA, Zhang ZJ, Wu LL, Chen Y (2010) Quantification of piperazine phosphate in human plasma by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry employing precolumn derivatization with dansyl chloride. Anal Chim Acta 664(1):40–48CrossRefGoogle Scholar
  49. 49.
    Santa T (2011) Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr: BMC 25(1–2):1–10CrossRefGoogle Scholar
  50. 50.
    Scientific TF (2012) Operating manual. In: Q Exactive ™, vol Revision C - 1288120Google Scholar
  51. 51.
    Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L (2009) Quantitative–qualitative data acquisition using a benchtop orbitrap mass spectrometer. J Am Soc Mass Spectrom 20(8):1441–1450CrossRefGoogle Scholar
  52. 52.
    Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015Google Scholar
  53. 53.
    Fedorova G, Randak T, Lindberg RH, Grabic R (2013) Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater. Rapid Commun Mass Spectrom 27(15):1751–1762CrossRefGoogle Scholar
  54. 54.
    Solliec M, Roy-Lachapelle A, Sauvé S (2015) Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. Anal Chim Acta 853:415–424CrossRefGoogle Scholar
  55. 55.
    Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauvé S (2015) High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-Exactive mass spectrometer. Talanta 132:836–844CrossRefGoogle Scholar
  56. 56.
    Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327CrossRefGoogle Scholar
  57. 57.
    Meriluoto JA, Spoof LE (2008) Cyanotoxins: sampling, sample processing and toxin uptake. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: State of the science and research needs. Springer, New York, pp 483–499Google Scholar
  58. 58.
    van Apeldoorn ME, Van Egmond HP, Speijers GJ, Bakker GJ (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51(1):7–60CrossRefGoogle Scholar
  59. 59.
    Nicholson BC, Burch MD (2001) Evaluation of analytical methods for detection and quantification of cyanotoxins in relation to Australian drinking water guidelines. National Health and Medical Research Council of Australia, CanberraGoogle Scholar
  60. 60.
    Li AF, Tian ZJ, Li J, Yu RC, Banack SA, Wang ZY (2010) Detection of the neurotoxin BMAA within cyanobacteria isolated from freshwater in China. Toxicon 55(5):947–953CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Hao Z, Kellmann M, Huhmer A (2012) HR/AM targeted peptide quantitation on a Q Exactive MS: a unique combination of high selectivity, sensitivity, and throughput. ed.C. Thermo Fisher Scientific, ch.12Google Scholar
  62. 62.
    Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2010) Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): “Where is the crossover point?”. Anal Chim Acta 673(1):60–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Audrey Roy-Lachapelle
    • 1
  • Morgan Solliec
    • 1
  • Sébastien Sauvé
    • 1
  1. 1.Department of ChemistryUniversité de MontréalMontréalCanada

Personalised recommendations