Analytical and Bioanalytical Chemistry

, Volume 407, Issue 27, pp 8265–8277

Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications

Review
Part of the following topical collections:
  1. Raman4Clinics

Abstract

In clinical practice, one objective is to obtain diagnostic information while minimizing the invasiveness of the tests and the pain for the patients. To this end, tests based on the interaction of light with readily available biofluids including blood, urine, or saliva are highly desirable. In this review we examine the state of the art regarding the use of surface-enhanced Raman spectroscopy (SERS) to investigate biofluids, focusing on diagnostic applications. First, a critical evaluation of the experimental aspects involved in the collection of SERS spectra is presented; different substrate types are introduced, with a clear distinction between colloidal and non-colloidal metal nanostructures. Then the effect of the excitation wavelength is discussed, along with anomalous bands and artifacts which might affect SERS spectra of biofluids. The central part of the review examines the literature available on the SERS spectra of blood, plasma, serum, urine, saliva, tears, and semen. Finally, diagnostic applications are critically discussed in the context of the published evidence; this section clearly reveals that SERS of biofluids is most promising as a rapid, cheap, and non-invasive tool for mass screening for cancer.

Keywords

SERS Raman Biofluids Diagnosis 

References

  1. 1.
    Long DA (1977) Raman spectroscopy. McGraw-Hill International Book Company, New YorkGoogle Scholar
  2. 2.
    McCreery RL (2005) Raman spectroscopy for chemical analysis. John Wiley & Sons, ChichesterGoogle Scholar
  3. 3.
    Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Vandenabeele P (2013) Practical Raman spectroscopy: an introduction. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  5. 5.
    Smith E, Dent G (2013) Modern Raman spectroscopy: a practical approach. John Wiley & Sons, ChichesterGoogle Scholar
  6. 6.
    Chang RK, Furtak TE (1982) Surface enhanced Raman scattering. Plenum Press, New YorkCrossRefGoogle Scholar
  7. 7.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  8. 8.
    Ru EL, Etchegoin P (2008) Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Schlücker S (2011) Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications. John Wiley & Sons, ChichesterGoogle Scholar
  10. 10.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25. doi:10.1016/S1369-7021(12)70017-2 CrossRefGoogle Scholar
  11. 11.
    Han XX, Ozaki Y, Zhao B (2012) Label-free detection in biological applications of surface-enhanced Raman scattering. TrAC Trends Anal Chem 38:67–78. doi:10.1016/j.trac.2012.05.006 CrossRefGoogle Scholar
  12. 12.
    Wang Y, Yan B, Chen L (2013) SERS Tags: novel optical nanoprobes for bioanalysis. Chem Rev 113:1391–1428. doi:10.1021/cr300120g CrossRefGoogle Scholar
  13. 13.
    Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y (2012) Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 43:817–827. doi:10.1002/jrs.3100 CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Hong H, Myklejord DV, Cai W (2011) Molecular imaging with SERS-active nanoparticles. Small 7:3261–3269. doi:10.1002/smll.201100597 CrossRefGoogle Scholar
  15. 15.
    Li H, Xu D (2014) Silver nanoparticles as labels for applications in bioassays. TrAC Trends Anal Chem 61:67–73. doi:10.1016/j.trac.2014.05.003 CrossRefGoogle Scholar
  16. 16.
    Xu S, Ji X, Xu W, Zhao B, Dou X, Bai Y, Ozaki Y (2005) Surface-enhanced Raman scattering studies on immunoassay. J Biomed Opt 10:1–12. doi:10.1117/1.1915487 Google Scholar
  17. 17.
    Xie W, Schlücker S (2013) Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344. doi:10.1039/C3CP43858A CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Lorenzo L, Fabris L, Alvarez-Puebla RA (2012) Multiplex optical sensing with surface-enhanced Raman scattering: a critical review. Anal Chim Acta 745:10–23. doi:10.1016/j.aca.2012.08.003 CrossRefGoogle Scholar
  19. 19.
    Song C, Min L, Zhou N, Yang Y, Su S, Huang W, Wang L (2014) Synthesis of novel gold mesoflowers as SERS tags for immunoassay with improved sensitivity. ACS Appl Mater Interfaces 6:21842–21850. doi:10.1021/am502636h CrossRefGoogle Scholar
  20. 20.
    Lin H-S, Carey JR (2014) The design and applications of nanoparticle coated microspheres in immunoassays. J Nanosci Nanotechnol 14:363–377. doi:10.1166/jnn.2014.9109 CrossRefGoogle Scholar
  21. 21.
    Pahlow S, März A, Seise B, Hartmann K, Freitag I, Kämmer E, Böhme R, Deckert V, Weber K, Cialla D, Popp J (2012) Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng Life Sci 12:131–143. doi:10.1002/elsc.201100056 CrossRefGoogle Scholar
  22. 22.
    Schlücker S (2014) Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795. doi:10.1002/anie.201205748 CrossRefGoogle Scholar
  23. 23.
    Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87. doi:10.1146/annurev-physchem-032511-143757 CrossRefGoogle Scholar
  24. 24.
    Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54. doi:10.1007/s00216-011-5631-x CrossRefGoogle Scholar
  25. 25.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837. doi:10.1366/11-06365 CrossRefGoogle Scholar
  26. 26.
    Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15:5301. doi:10.1039/c2cp44030j CrossRefGoogle Scholar
  27. 27.
    Álvarez-Puebla RA (2012) Effects of the excitation wavelength on the SERS spectrum. J Phys Chem Lett 3:857–866. doi:10.1021/jz201625j CrossRefGoogle Scholar
  28. 28.
    Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Surface-enhanced Raman scattering on colloidal nanostructures. Adv Colloid Interface Sci 116:45–61. doi:10.1016/j.cis.2005.04.007 CrossRefGoogle Scholar
  29. 29.
    Brown RJC, Milton MJT (2008) Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc 39:1313–1326. doi:10.1002/jrs.2030 CrossRefGoogle Scholar
  30. 30.
    Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599. doi:10.1002/smll.200800337 CrossRefGoogle Scholar
  31. 31.
    Lin X-M, Cui Y, Xu Y-H, Ren B, Tian Z-Q (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394:1729–1745. doi:10.1007/s00216-009-2761-5 CrossRefGoogle Scholar
  32. 32.
    Kumar GVP (2012) Plasmonic nano-architectures for surface enhanced Raman scattering: a review. J Nanophotonics 6:064503. doi:10.1117/1.JNP.6.064503 CrossRefGoogle Scholar
  33. 33.
    Luo S-C, Sivashanmugan K, Liao J-D, Yao C-K, Peng H-C (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. doi:10.1016/j.bios.2014.05.013 CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Walkenfort B, Yoon JH, Schlücker S, Xie W (2015) Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Phys Chem Chem Phys. doi:10.1039/C4CP05073H Google Scholar
  35. 35.
    Rycenga M, Camargo PHC, Li W, Moran CH, Xia Y (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703. doi:10.1021/jz900286a CrossRefGoogle Scholar
  36. 36.
    Mock JJ, Norton SM, Chen S-Y, Lazarides AA, Smith DR (2011) Electromagnetic enhancement effect caused by aggregation on SERS-Active gold nanoparticles. Plasmonics 6:113–124. doi:10.1007/s11468-010-9176-1 CrossRefGoogle Scholar
  37. 37.
    Okamoto H, Imura K (2013) Visualizing the optical field structures in metal nanostructures. J Phys Chem Lett 4:2230–2241. doi:10.1021/jz401023d CrossRefGoogle Scholar
  38. 38.
    Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305. doi:10.1021/jp2010309 CrossRefGoogle Scholar
  39. 39.
    Birdi KS (2009) Surface and colloid chemistry: principles and applications. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  40. 40.
    Pashley R, Karaman M (2005) Applied colloid and surface chemistry. John Wiley & Sons, ChichesterGoogle Scholar
  41. 41.
    Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, AmsterdamGoogle Scholar
  42. 42.
    McClatchey KD (2002) Clinical Laboratory Medicine. Lippincott Williams & Wilkins, PhiladephiaGoogle Scholar
  43. 43.
    Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 28:9673–9679. doi:10.1021/la301104a CrossRefGoogle Scholar
  44. 44.
    Zhang D, Ansar SM, Vangala K, Jiang D (2010) Protein adsorption drastically reduces surface-enhanced Raman signal of dye molecules. J Raman Spectrosc 41:952–957. doi:10.1002/jrs.2548 CrossRefGoogle Scholar
  45. 45.
    Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780. doi:10.1039/c1cs15233e CrossRefGoogle Scholar
  46. 46.
    Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406:2355–2365. doi:10.1007/s00216-014-7622-1 CrossRefGoogle Scholar
  47. 47.
    Liu R, Zi X, Kang Y, Si M, Wu Y (2011) Surface-enhanced Raman scattering study of human serum on PVA-Ag nanofilm prepared by using electrostatic self-assembly. J Raman Spectrosc 42:137–144. doi:10.1002/jrs.2665 CrossRefGoogle Scholar
  48. 48.
    Stosch R, Henrion A, Schiel D, Güttler B (2005) Surface-enhanced Raman scattering based approach for quantitative determination of creatinine in human serum. Anal Chem 77:7386–7392. doi:10.1021/ac0511647 CrossRefGoogle Scholar
  49. 49.
    Li S, Zhang Y, Xu J, Li L, Zeng Q, Lin L, Guo Z, Liu Z, Xiong H, Liu S (2014) Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Appl Phys Lett 105:091104. doi:10.1063/1.4892667 CrossRefGoogle Scholar
  50. 50.
    Li SX, Zhang YJ, Zeng QY, Li LF, Guo ZY, Liu ZM, Xiong HL, Liu SH (2014) Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine. Laser Phys Lett 11:065603. doi:10.1088/1612-2011/11/6/065603 CrossRefGoogle Scholar
  51. 51.
    Li S-X, Zeng Q-Y, Li L-F, Zhang Y-J, Wan M-M, Liu Z-M, Xiong H-L, Guo Z-Y, Liu S-H (2013) Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection. J Biomed Opt 18:027008. doi:10.1117/1.JBO.18.2.027008 CrossRefGoogle Scholar
  52. 52.
    Casella M, Lucotti A, Tommasini M, Bedoni M, Forvi E, Gramatica F, Zerbi G (2011) Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochim Acta A Mol Biomol Spectrosc 79:915–919. doi:10.1016/j.saa.2011.03.048 CrossRefGoogle Scholar
  53. 53.
    Lin D, Pan J, Huang H, Chen G, Qiu S, Shi H, Chen W, Yu Y, Feng S, Chen R (2014) Label-free blood plasma test based on surface-enhanced Raman scattering for tumor stages detection in nasopharyngeal cancer. Sci Rep. doi:10.1038/srep04751 Google Scholar
  54. 54.
    Feng S, Lin D, Lin J, Li B, Huang Z, Chen G, Zhang W, Wang L, Pan J, Chen R, Zeng H (2013) Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138:3967–3974. doi:10.1039/c3an36890d CrossRefGoogle Scholar
  55. 55.
    Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 19:13565–13577CrossRefGoogle Scholar
  56. 56.
    Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H (2011) Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 26:3167–3174. doi:10.1016/j.bios.2010.12.020 CrossRefGoogle Scholar
  57. 57.
    Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, Cheng M, Huang Z, Chen J, Zeng H (2010) Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 25:2414–2419. doi:10.1016/j.bios.2010.03.033 CrossRefGoogle Scholar
  58. 58.
    Marshall WJ, Bangert SK (2008) Clinical biochemistry: metabolic and clinical aspects. Elsevier Health Sciences, PhiladelphiaGoogle Scholar
  59. 59.
    Huang S, Wang L, Chen W, Feng S, Lin J, Huang Z, Chen G, Li B, Chen R (2014) Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy. Laser Phys Lett 11:115604. doi:10.1088/1612-2011/11/11/115604 CrossRefGoogle Scholar
  60. 60.
    Wang T-L, Chiang HK, Lu H-H, Peng F-Y (2005) Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples. Opt Quant Electron 37:1415–1422. doi:10.1007/s11082-005-4221-6 CrossRefGoogle Scholar
  61. 61.
    Del Mistro G, Cervo S, Mansutti E, Spizzo R, Colombatti A, Belmonte P, Zucconelli R, Steffan A, Sergo V, Bonifacio A (2015) Surface enhanced Raman spectroscopy of urine for prostate cancer detection: a preliminary study. Anal Bioanal Chem. doi:10.1007/s00216-015-8610-9 Google Scholar
  62. 62.
    Li X (2012) Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt 17:037003. doi:10.1117/1.JBO.17.3.037003 CrossRefGoogle Scholar
  63. 63.
    Hu P, Zheng X-S, Zong C, Li M-H, Zhang L-Y, Li W, Ren B (2014) Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears: DCDRS and SERS provide complementary information of whole human tears. J Raman Spectrosc 45:565–573. doi:10.1002/jrs.4499 CrossRefGoogle Scholar
  64. 64.
    Premasiri WR, Lee JC, Ziegler LD (2012) Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem B 116:9376–9386. doi:10.1021/jp304932g CrossRefGoogle Scholar
  65. 65.
    Boyd S, Bertino MF, Ye D, White LS, Seashols SJ (2013) Highly sensitive detection of blood by surface enhanced Raman scattering. J Forensic Sci 58:753–756. doi:10.1111/1556-4029.12120 CrossRefGoogle Scholar
  66. 66.
    Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V (2012) Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering. Langmuir 28:13166–13171. doi:10.1021/la302383r CrossRefGoogle Scholar
  67. 67.
    Kleinman SL, Sharma B, Blaber MG, Henry A-I, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP (2013) Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc 135:301–308. doi:10.1021/ja309300d CrossRefGoogle Scholar
  68. 68.
    Gómez DE, Teo ZQ, Altissimo M, Davis TJ, Earl S, Roberts A (2013) The dark side of plasmonics. Nano Lett 13:3722–3728. doi:10.1021/nl401656e CrossRefGoogle Scholar
  69. 69.
    Chen X, Huang Z, Feng, Chen J, Wang, Lu, Zeng H, Chen (2012) Analysis and differentiation of seminal plasma via polarized SERS spectroscopy. Int J Nanomedicine 6115. doi:10.2147/IJN.S37782
  70. 70.
    Brazhe NA, Abdali S, Brazhe AR, Luneva OG, Bryzgalova NY, Parshina EY, Sosnovtseva OV, Maksimov GV (2009) New insight into erythrocyte through in vivo surface-enhanced Raman spectroscopy. Biophys J 97:3206–3214. doi:10.1016/j.bpj.2009.09.029 CrossRefGoogle Scholar
  71. 71.
    Drescher D, Büchner T, McNaughton D, Kneipp J (2013) SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components. Phys Chem Chem Phys 15:5364. doi:10.1039/c3cp43883j CrossRefGoogle Scholar
  72. 72.
    Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith-Palmer T (2009) Tuning the surface-enhanced Raman scattering effect to different molecular groups by switching the silver colloid solution pH. Appl Spectrosc 63:214–223. doi:10.1366/000370209787391987 CrossRefGoogle Scholar
  73. 73.
    Giese B, McNaughton D (2002) Surface-enhanced Raman spectroscopic study of uracil. The influence of the surface substrate, surface potential, and pH. J Phys Chem B 106:1461–1470. doi:10.1021/jp011986h CrossRefGoogle Scholar
  74. 74.
    Leopold N, Cîntă-Pînzaru S, Baia M, Antonescu E, Cozar O, Kiefer W, Popp J (2005) Raman and surface-enhanced Raman study of thiamine at different pH values. Vib Spectrosc 39:169–176. doi:10.1016/j.vibspec.2005.02.019 CrossRefGoogle Scholar
  75. 75.
    Garrido C, Aguayo T, Clavijo E, Gómez-Jeria JS, Campos-Vallette MM (2013) The effect of the pH on the interaction of L-arginine with colloidal silver nanoparticles. A Raman and SERS study. J Raman Spectrosc 44:1105–1110. doi:10.1002/jrs.4331 CrossRefGoogle Scholar
  76. 76.
    Alvarez-Puebla RA, Arceo E, Goulet PJG, Garrido JJ, Aroca RF (2005) Role of nanoparticle surface charge in surface-enhanced Raman scattering. J Phys Chem B 109:3787–3792. doi:10.1021/jp045015o CrossRefGoogle Scholar
  77. 77.
    Tortora GJ, Derrickson BH (2009) Principles of anatomy and physiology. John Wiley & Sons, ChichesterGoogle Scholar
  78. 78.
    Strasinger SK, Lorenzo MSD (2014) Urinalysis and body fluids, 6th edn. F.A. Davis, PhiladelphiaGoogle Scholar
  79. 79.
    Sánchez-Cortés S, García-Ramos JV (1998) Anomalous Raman bands appearing in surface-enhanced Raman spectra. J Raman Spectrosc 29:365–371. doi:10.1002/(SICI)1097-4555(199805)29:5<365::AID-JRS247>3.0.CO;2-Y CrossRefGoogle Scholar
  80. 80.
    Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS One 6, e16957. doi:10.1371/journal.pone.0016957 CrossRefGoogle Scholar
  81. 81.
    Han HW, Yan XL, Dong RX, Ban G, Li K (2008) Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS). Appl Phys B 94:667–672. doi:10.1007/s00340-008-3299-5 CrossRefGoogle Scholar
  82. 82.
    Maksimov GV, Brazhe NA, Yusipovich AI, Parshina EY, Rodnenkov OV, Rubin AB, Levin GG, Bykov VA (2012) Use of nanoparticles for studying the conformations of submembrane hemoglobin. Biophysics 56:1069–1073. doi:10.1134/S0006350911060121 CrossRefGoogle Scholar
  83. 83.
    Semenova AA, Goodilin EA, Brazhe NA, Ivanov VK, Baranchikov AE, Lebedev VA, Goldt AE, Sosnovtseva OV, Savilov SV, Egorov AV, Brazhe AR, Parshina EY, Luneva OG, Maksimov GV, Tretyakov YD (2012) Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. J Mater Chem 22:24530–24544. doi:10.1039/C2JM34686A CrossRefGoogle Scholar
  84. 84.
    Brazhe NA, Parshina EY, Khabatova VV, Semenova AA, Brazhe AR, Yusipovich AI, Sarycheva AS, Churin AA, Goodilin EA, Maksimov GV, Sosnovtseva OV (2013) Tuning SERS for living erythrocytes: focus on nanoparticle size and plasmon resonance position. J Raman Spectrosc 44:686–694. doi:10.1002/jrs.4274 CrossRefGoogle Scholar
  85. 85.
    Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242. doi:10.1002/adfm.200901846 CrossRefGoogle Scholar
  86. 86.
    Aseichev AV, Azizova OA, Beckman EM, Skotnikova OI, Dudnik LB, Shcheglovitova ON, Sergienko VI (2014) Effects of gold nanoparticles on erythrocyte hemolysis. Bull Exp Biol Med 156:495–498. doi:10.1007/s10517-014-2383-6 CrossRefGoogle Scholar
  87. 87.
    Lin D, Feng S, Huang H, Chen W, Shi H, Liu N, Chen L, Chen W, Yu Y, Chen R (2014) Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. J Biomed Nanotechnol 10:478–484. doi:10.1166/jbn.2014.1750 CrossRefGoogle Scholar
  88. 88.
    Yuen C, Zheng W, Huang Z (2010) Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens Bioelectron 26:580–584. doi:10.1016/j.bios.2010.07.030 CrossRefGoogle Scholar
  89. 89.
    Ito H, Inoue H, Hasegawa K, Hasegawa Y, Shimizu T, Kimura S, Onimaru M, Ikeda H, Kudo S (2014) Use of surface-enhanced Raman scattering for detection of cancer-related serum-constituents in gastrointestinal cancer patients. Nanomedicine Nanotechnol Biol Med 10:599–608. doi:10.1016/j.nano.2013.09.006 CrossRefGoogle Scholar
  90. 90.
    Premasiri WR, Clarke RH, Womble ME (2001) Urine analysis by laser Raman spectroscopy. Lasers Surg Med 28:330–334. doi:10.1002/lsm.1058 CrossRefGoogle Scholar
  91. 91.
    Dong R, Weng S, Yang L, Liu J (2015) Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal Chem 150210061647000. doi:10.1021/acs.analchem.5b00137
  92. 92.
    Leordean C, Canpean V, Astilean S (2012) Surface-Enhanced Raman Scattering (SERS) analysis of urea trace in urine, fingerprint, and tear samples. Spectrosc Lett 45:550–555. doi:10.1080/00387010.2011.649439 CrossRefGoogle Scholar
  93. 93.
    Wang H, Malvadkar N, Koytek S, Bylander J, Reeves WB, Demirel MC (2010) Quantitative analysis of creatinine in urine by metalized nanostructured parylene. J Biomed Opt 15:027004. doi:10.1117/1.3369002 CrossRefGoogle Scholar
  94. 94.
    Yang T, Guo X, Wu Y, Wang H, Fu S, Wen Y, Yang H (2014) Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interfaces 6:20985–20993. doi:10.1021/am5057536 CrossRefGoogle Scholar
  95. 95.
    Kah JCY, Kho KW, Lee CGL, James C, Sheppard R, Shen ZX, Soo KC, Olivo MC (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2:785–798Google Scholar
  96. 96.
    Yuen C, Zheng W, Huang Z (2008) Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment. J Biomed Opt 13:064040. doi:10.1117/1.3050447 CrossRefGoogle Scholar
  97. 97.
    Yuen C, Zheng W, Huang Z (2009) Optimization of extinction efficiency of gold-coated polystyrene bead substrates improves surface-enhanced Raman scattering effects by post-growth microwave heating treatment. J Raman Spectrosc. doi:10.1002/jrs.2464 Google Scholar
  98. 98.
    Wang Y, Hua L, Liu J, Qu D, Chen A, Jiao Y, Guo X, Liu C, Huang W, Wang H (2009) Preliminary study on the quick detection of acquired immure deficiency syndrome by saliva analysis using surface enhanced Raman spectroscopic technique. IEEE 885–887Google Scholar
  99. 99.
    Farquharson S, Gift A, Shende C, Inscore F, Ordway B, Farquharson C, Murren J (2008) Surface-enhanced Raman spectral measurements of 5-fluorouracil in saliva. Molecules 13:2608–2627. doi:10.3390/molecules13102608 CrossRefGoogle Scholar
  100. 100.
    Moskovits M, Suh JS (1984) Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem 88:5526–5530. doi:10.1021/j150667a013 CrossRefGoogle Scholar
  101. 101.
    Creighton JA (1988) In: Clark RJH, Hester RE (eds) Spectroscopy of surfaces. Chichester, WileyGoogle Scholar
  102. 102.
    Le Ru EC, Meyer SA, Artur C, Etchegoin PG, Grand J, Lang P, Maurel F (2011) Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem Commun 47:3903. doi:10.1039/c1cc10484e CrossRefGoogle Scholar
  103. 103.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS One 8, e73076. doi:10.1371/journal.pone.0073076 CrossRefGoogle Scholar
  104. 104.
    Reyes-Goddard JM, Barr H, Stone N (2008) Surface enhanced Raman scattering of herpes simplex virus in tear film. Photodiagnosis Photodyn Ther 5:42–49. doi:10.1016/j.pdpdt.2008.01.002 CrossRefGoogle Scholar
  105. 105.
    Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  106. 106.
    Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  107. 107.
    Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 760:25–33. doi:10.1016/j.aca.2012.11.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Raman Spectroscopy Laboratory, Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  2. 2.CRO-BiobankCRO Aviano, National Cancer InstituteAvianoItaly
  3. 3.Clinical Cancer PathologyCRO Aviano, National Cancer InstituteAvianoItaly

Personalised recommendations