Skip to main content

Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging

Abstract

Advanced analytical imaging techniques, including matrix-assisted laser desorption/ionization high-resolution mass spectrometry (MALDI-HRMS) imaging, can be used to visualize the distribution, localization, and dynamics of target compounds and their precursors with limited sample preparation. Herein we report an application of MALDI-HRMS imaging to map, in high spatial resolution, the accumulation of the medicinally important naphthodianthrone hypericin, its structural analogues and proposed precursors, and other crucial phytochemical constituents in the leaves of two hypericin-containing species, Hypericum perforatum and Hypericum olympicum. We also investigated Hypericum patulum, which does not contain hypericin or its protoforms. We focused on both the secretory (dark glands, translucent glands, secretory canals, laminar glands, and ventral glands) and the surrounding non-secretory tissues to clarify the site of biosynthesis and localization of hypericin, its possible precursors, and patterns of localization of other related compounds concomitant to the presence or absence of hypericin. Hypericin, pseudohypericin, and protohypericin accumulate in the dark glands. However, the precursor emodin not only accumulates in the dark glands but is also present outside the glands in both hypericin-containing species. In hypericin-lacking H. patulum, however, emodin typically accumulates only in the glands, thereby providing evidence that hypericin is possibly biosynthesized outside the dark glands and thereafter stored in them. The distribution and localization of related compounds were also evaluated and are discussed concomitant to the occurrence of hypericin. Our study provides the basis for further detailed investigation of hypericin biosynthesis by gene discovery and expression studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kosuth J, Smelcerovic A, Borsch T, Zuehlke S, Karppinen K, Spiteller M, Hohtola A, Cellarova E (2011) The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Funct Plant Biol 38:35–43

    Article  CAS  Google Scholar 

  2. Kosuth J, Hrehorova D, Jaskolski M, Cellarova E (2013) Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant Cell Tissue Organ Cult 114:207–216

    Article  CAS  Google Scholar 

  3. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  Google Scholar 

  4. Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835

    Article  CAS  Google Scholar 

  5. Crockett SL, Robson NKB (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5:1–13

    Google Scholar 

  6. Brockmann H, Haschad MN, Maier K, Pohl F (1939) Über das Hypericin, den photodynamisch wirksamen Farbstoff aus Hypericum perforatum. Naturwissenschaften 27:550

    Article  CAS  Google Scholar 

  7. Brockmann H, Pohl F, Maier K, Haschad MN (1942) Über das Hypericin, den photodynamischen Farbstoff des Johanniskrautes (Hypericum perforatum). Ann Chem 553:1–52

    Article  CAS  Google Scholar 

  8. Brockmann H, Kluge F, Muxfeldt H (1957) Totalsynthese des Hypericins. Chem Ber 90:2302–2318

    Article  CAS  Google Scholar 

  9. Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 30:129–134

    Article  CAS  Google Scholar 

  10. Häberlein H, Tschiersch KP, Stock S, Hölzl J (1992) Johanniskraut (Hypericum perforatum L.): Nachweis eines weiteren Naphthodianthrons. Pharm Ztg Wiss 5(137):169–174

    Google Scholar 

  11. Kitanov GM (2001) Hypericin and pseudohypericin in some Hypericum species. Biochem Syst Ecol 29:171–178

    Article  CAS  Google Scholar 

  12. Makovetska OY (1999) Research of biologically active substances of Hypericum L. species: report II. Farm Zh (Kiev) 1:47–52

    Google Scholar 

  13. Crockett SL, Schaneberg B, Khan IA (2005) Phytochemical profiling of New and Old World Hypericum (St. John's Wort) species. Phytochem Anal 16:479–485

    Article  CAS  Google Scholar 

  14. Kirakosyan A, Gibson DM, Kaufman PB (2008) The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 149–164

    Chapter  Google Scholar 

  15. Brockmann H, Falkenhausen EH, Dorlares A (1950) Die Konstitution des Hypericins. Naturwissenschaften 37:540

    Article  CAS  Google Scholar 

  16. Thomson RH (1957) Naturally occurring quinones. Butterworths Scientific Publications, London

    Google Scholar 

  17. Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    Article  CAS  Google Scholar 

  18. Kosuth J, Katkovcinova Z, Olexova P, Cellarova E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    Article  CAS  Google Scholar 

  19. Cellarova E, Daxnerova Z, Kimakova K, Haluskova J (1994) The variability of hypericin content in the regenerants of Hypericum perforatum. Acta Biotechnol 14:267–274

    Article  CAS  Google Scholar 

  20. Briskin DP, Leroy A, Gawienowski M (2000) Influence of nitrogen on the production of hypericins by St. John’s wort. Plant Physiol Biochem 38:413–420

    Article  CAS  Google Scholar 

  21. Onelli E, Rivetta A, Giorgi A, Bignami M, Cocucci M, Patrignani G (2002) Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora 197:92–102

    Article  Google Scholar 

  22. Hölzl J, Petersen M (2003) Chemical constituents of Hypericum ssp. In: Ernst E (ed) Hypericum: the genus Hypericum (series: medicinal and aromatic plants - industrial profiles), vol 31. Taylor and Francis, London, pp 77–93

    Google Scholar 

  23. Hadjur C, Richard MJ, Parat MO, Jardon P, Favier A (1996) Photodynamic effects of hypericin on lipid peroxidation and antioxidant status in melanoma cells. Photochem Photobiol 64:375–381

    Article  CAS  Google Scholar 

  24. Delaey EM, Obermueller R, Zupko I, De Vos D, Falk H, de Witte PA (2001) In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines. Photochem Photobiol 74:164–171

    Article  CAS  Google Scholar 

  25. Kamuhabwa AR, Agostinis PM, D’Hallewin MA, Baert L, de Witte PA (2001) Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem Photobiol 74:126–132

    Article  CAS  Google Scholar 

  26. Kubin A, Wierrani F, Burner U, Alth G, Grunberger W (2005) Hypericin - the facts about a controversial agent. Curr Pharm Des 11:233–253

    Article  CAS  Google Scholar 

  27. Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    Article  CAS  Google Scholar 

  28. Maggi F, Ferretti G, Pocceschi N, Meneghini L, Ricciutelli M (2004) Morphological, histochemical and phytochemical investigation of the genus Hypericum of the central Italy. Fitoterapia 75:702–711

    Article  CAS  Google Scholar 

  29. Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139:759–783

    Article  Google Scholar 

  30. Shih C-J, Chen P-Y, Liaw C-C, Lai Y-M, Yang Y-L (2014) Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep. doi:10.1039/c3np70091g

    Google Scholar 

  31. Bjarnholt N, Li B, D’Alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat Prod Rep. doi:10.1039/c3np70100j

    Google Scholar 

  32. Jaeger RJ, Lamshöft M, Gottfried S, Spiteller M, Spiteller P (2013) HR-MALDI-MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata. J Nat Prod 76:127–134

    Article  CAS  Google Scholar 

  33. Kusari P, Kusari S, Lamshöft M, Sezgin S, Spiteller M, Kayser O (2014) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98:7173–7183

    Article  CAS  Google Scholar 

  34. Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584

    Article  CAS  Google Scholar 

  35. Ciccarelli D, Andreucci AC, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Ann Bot 88:637–644

    Article  Google Scholar 

  36. Łotocka B, Osińska E (2010) Shoot anatomy and secretory structures in Hypericum species (Hypericaceae). Bot J Linn Soc 163:70–86

    Article  Google Scholar 

  37. Nürk NM, Crockett SL (2011) Morphological and phytochemical diversity among Hypericum species of the Mediterranean Basin. Med Aromat Plant Sci Biotechnol 5:14–28

    Google Scholar 

  38. Perrone R, Rosa PD, Castro OD, Colombo P (2013) Leaf and stem anatomy in eight Hypericum species (Clusiaceae). Acta Bot Croat 72:269–286

    Google Scholar 

  39. Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    Article  CAS  Google Scholar 

  40. Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatos A (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J 60:907–918

    Article  Google Scholar 

  41. Thunig J, Hansen SH, Janfelt C (2011) Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem 83:3256–3259

    Article  CAS  Google Scholar 

  42. Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70:1222–1232

    Article  CAS  Google Scholar 

  43. Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, London

    Google Scholar 

  44. Smelcerovic A, Spiteller M (2006) Phytochemical analysis of nine Hypericum L. species from Serbia and the F.Y.R. Macedonia. Pharmazie 61:251–252

    CAS  Google Scholar 

  45. Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    Article  CAS  Google Scholar 

  46. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the grant project SOFOS-knowledge and skill development of staff and students of P. J. Safarik University in Kosice (contract number: 003/2013/1.2/OPV, ITMS code: 26110230088), funded by the European Social Fund through the Operational Program Education. S.K. was the tutor assigned to supervise and train K.N. within the scope of the SOFOS grant project. We thank the German Research Foundation (DFG) for financing the MALDI imaging high-resolution mass spectrometers and the Scientific Grant Agency of Slovak Republic VEGA 1/0090/15. We gratefully acknowledge Dr S. Zühlke (INFU, TU Dortmund) for valuable discussions, technical assistance, and critically reviewing our manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Souvik Kusari or Michael Spiteller.

Additional information

This manuscript is dedicated with best wishes to Professor Dr Christian Hertweck to honor his remarkable recognition as a Gottfried Wilhelm Leibniz Prize winner in 2015.

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.35 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kusari, S., Sezgin, S., Nigutova, K. et al. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal Bioanal Chem 407, 4779–4791 (2015). https://doi.org/10.1007/s00216-015-8682-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8682-6

Keywords

  • High-resolution mass spectrometry
  • Matrix-assisted laser desorption/ionization (MALDI) high-resolution mass spectrometry imaging
  • Hypericum perforatum L
  • Hypericum olympicum L
  • Hypericum patulum THUNB
  • Hypericin
  • Biosynthesis
  • Dark glands