Analytical and Bioanalytical Chemistry

, Volume 407, Issue 21, pp 6391–6404 | Cite as

Identification of isobaric lyso-phosphatidylcholines in lipid extracts of gilthead sea bream (Sparus aurata) fillets by hydrophilic interaction liquid chromatography coupled to high-resolution Fourier-transform mass spectrometry

  • Sara Granafei
  • Ilario Losito
  • Francesco Palmisano
  • Tommaso R. I. CataldiEmail author
Research Paper
Part of the following topical collections:
  1. High-Resolution Mass Spectrometry in Food and Environmental Analysis


The numerous and varied biological roles of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) have fueled a great demand for technologies that enable rapid, in-depth structural examination of these lipids in foodstuffs. Here, we describe the capabilities of a newly configured combination of high-efficiency liquid chromatography and high-resolution/accuracy Fourier-transform mass spectrometry with electrospray ionization (LC-ESI-FTMS), designed for lipidomics applications that require the identification of PC in their lyso forms. The devised strategy, involving a separation by hydrophilic interaction liquid chromatography (HILIC) on spherical, fused-core ultrapure silica particles (2.7 μm) of a narrow-bore column (2.1 mm i.d.), enabled the identification of as many as 71 LPC species in the lipid extracts of gilthead sea bream (Sparus aurata) fillets. In this way, LPC as proton (43) and sodium (28) adducts, i.e., [M + H]+ and [M + Na]+ ions (with M representing the zwitterionic form), were identified. In several cases, the extremely high (sub-ppm) mass accuracy and the high chromatographic efficiency available with the adopted instrumentation enabled the distinction of isobaric and closely eluting LPC species. Informative tandem mass spectra, based on high-energy collision induced dissociation (HCD), were also obtained, thus distinguishing regioisomeric LPC species (i.e., LPC differing only for the location of the residual side chain on the glycerol backbone) and between proton and sodium adducts.

Graphical Abstract

Extracted Ion Current chromatogram (XIC) obtained for the m/z value 568.339, showing the presence of two regioisomeric Lysophosphatidylcholines. The corresponding high collisional energy tandem MS spectra, obtained using a HCD cell, are shown as insets


Seafood lipidomics Lysophospholipids High-resolution MS Orbitrap MS Hydrophilic interaction liquid chromatography Sparus aurata 



This work was supported by the project PONa3_00395/1 “BIOSCIENZE & SALUTE (B&H)” of the Italian Ministero per l'Istruzione, l'Università e la Ricerca (MIUR), and through the research project PRIN 2012TLC44W_003. The authors wish to thank the S.C.A. s.r.l. (Servizi Chimici Ambientali) laboratory for the ICP-MS analyses.


  1. 1.
    Lund EK (2013) Health benefits of seafood; is it just the fatty acids? Food Chem 140:413–420. doi: 10.1016/j.foodchem.2013.01.034 CrossRefGoogle Scholar
  2. 2.
    Huss HH (1995) Quality and quality changes in fresh fish. Food and Agriculture Organization (FAO). In: Fish. Tech. Pap. Accessed 19 Apr 2015
  3. 3.
    Abbas KA, Mohamed A, Jamilah B, Ebrahimian M (2008) A review on correlations between fish freshness and pH during cold storage. Am J Biochem Biotechnol 4:416–421. doi: 10.3844/ajbbsp.2008.416.421 CrossRefGoogle Scholar
  4. 4.
    Cifuentes A (2013) Foodomics. In: Cifuentes A (ed) Foodomics Adv. Mass Spectrom. Mod. Food Sci. Nutr. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 1–13Google Scholar
  5. 5.
    Lovern JA, Olley J, Watson HA (1959) Changes in the lipids of cod during storage in ice. J Sci Food Agric 10:327–337. doi: 10.1002/jsfa.2740100605 CrossRefGoogle Scholar
  6. 6.
    Olley J, Lovern JA (1960) Phospholipid hydrolysis in cod flesh stored at various temperatures. J Sci Food Agric 11:644–652. doi: 10.1002/jsfa.2740111109 CrossRefGoogle Scholar
  7. 7.
    Ackman RG (2007) The influence of lipids on fish quality. Int J Food Sci Technol 2:169–181. doi: 10.1111/j.1365-2621.1967.tb01339.x CrossRefGoogle Scholar
  8. 8.
    Waissbluth MD, Guzman L, Plachco FP (1971) Oxidation of lipids in fish meal. J Am Oil Chem Soc 48:420–424. doi: 10.1007/BF02637366 CrossRefGoogle Scholar
  9. 9.
    Gardner HW (1979) Lipid hydroperoxide reactivity with proteins and amino acids: a review. J Agric Food Chem 27:220–229. doi: 10.1021/jf60222a034 CrossRefGoogle Scholar
  10. 10.
    Han TJ, Liston J (1988) Correlation between lipid peroxidation and phospholipid hydrolysis in frozen fish muscle. J Food Sci 53:1917–1917. doi: 10.1111/j.1365-2621.1988.tb07879.x CrossRefGoogle Scholar
  11. 11.
    Undeland I, Hall G, Lingnert H (1999) Lipid oxidation in fillets of herring (Clupea harengus) during ice storage. J Agric Food Chem 47:524–532. doi: 10.1021/jf9807871 CrossRefGoogle Scholar
  12. 12.
    Bragadóttir M, Pálmadóttir H, Kristbergsson K (2004) Composition and chemical changes during storage of fish meal from Capelin (Mallotus villosus). J Agric Food Chem 52:1572–1580. doi: 10.1021/jf034677s CrossRefGoogle Scholar
  13. 13.
    Chaijan M, Benjakul S, Visessanguan W, Faustman C (2006) Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chem 99:83–91. doi: 10.1016/j.foodchem.2005.07.022 CrossRefGoogle Scholar
  14. 14.
    Haard N (2002) The role of enzymes in determining seafood color, flavor and texture. In: Bremner HA (ed) Saf. Qual. issues fish Process., CRC Press. Boca Raton, USA, pp 220–253Google Scholar
  15. 15.
    Kolakowska A (2003) Lipid oxidation in food systems. In: Sikorski Z, Kolakowska A (eds) Chem. functional Prop. food lipids. London, UK, pp 133–165Google Scholar
  16. 16.
    Ohshima T, Wada S, Koizumi C (1985) Accumulation of lyso-form phospholipids in several species of fish flesh during storage at −5 °C. B Jpn Soc Sci Fish 51:965–972CrossRefGoogle Scholar
  17. 17.
    Murphy RC, Harrison KA (1994) Fast atom bombardment mass spectrometry of phospholipids. Mass Spectrom Rev 13:57–75. doi: 10.1002/mas.1280130105 CrossRefGoogle Scholar
  18. 18.
    Pulfer M, Murphy R (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364. doi: 10.1002/mas.10061 CrossRefGoogle Scholar
  19. 19.
    Schiller J, Süss R, Arnhold J, Fuchs B, Lessig J, Müller M, Petković M, Spalteholz H, Zschörnig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488. doi: 10.1016/j.plipres.2004.08.001 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Zhang H (2011) Tracking phospholipid profiling of muscle from Ctennopharyngodon idellus during storage by shotgun lipidomics. J Agric Food Chem 59:11635–11642. doi: 10.1021/jf2030852 CrossRefGoogle Scholar
  21. 21.
    Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 871:174–181. doi: 10.1016/j.jchromb.2008.04.002 CrossRefGoogle Scholar
  22. 22.
    Boselli E, Pacetti D, Lucci P, Frega NG (2012) Characterization of phospholipid molecular species in the edible parts of bony fish and shellfish. J Agric Food Chem 60:3234–3245. doi: 10.1021/jf205159a CrossRefGoogle Scholar
  23. 23.
    Pacetti D, Lucci P, Mozzon M, Gagliardi R, Fiorini D, Frega NG (2015) Influence of deep-fat frying process on phospholipid molecular species composition of Sardina pilchardus fillet. Food Control 48:155–162. doi: 10.1016/j.foodcont.2014.06.005 CrossRefGoogle Scholar
  24. 24.
    Herrero M, Simõ C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69. doi: 10.1002/mas.20335 CrossRefGoogle Scholar
  25. 25.
    Losito I, Patruno R, Conte E, Cataldi TRI, Megli FM, Palmisano F (2013) Phospholipidomics of human blood microparticles. Anal Chem 85:6405–6413. doi: 10.1021/ac400829r CrossRefGoogle Scholar
  26. 26.
    Losito I, Conte E, Cataldi TRI, Cioffi N, Megli FM, Palmisano F (2015) The phospholipidomic signatures of human blood microparticles, platelets and platelet-derived microparticles: a comparative HILIC-ESI-MS investigation. Lipids 50:71–84. doi: 10.1007/s11745-014-3975-7 CrossRefGoogle Scholar
  27. 27.
    Desoubzdanne D, Claparols C, Martins-Froment N, Zedde C, Balayssac S, Gilard V, Tercé F, Martino R, Malet-Martino M (2010) Analysis of hydrophilic and lipophilic choline compounds in radioresistant and radiosensitive glioblastoma cell lines by HILIC-ESI-MS/MS. Anal Bioanal Chem 398:2723–2730. doi: 10.1007/s00216-010-4196-4 CrossRefGoogle Scholar
  28. 28.
    Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217:5179–5183. doi: 10.1016/j.chroma.2010.05.014 CrossRefGoogle Scholar
  29. 29.
    Zheng L, T’Kind R, Decuypere S, von Freyend SJ, Coombs GH, Watson DG (2010) Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 24:2074–2082. doi: 10.1002/rcm.4618 CrossRefGoogle Scholar
  30. 30.
    Xiong Y, Zhao Y, Goruk S, Oilund K, Field CJ, Jacobs RL, Curtis JM (2012) Validation of an LC-MS/MS method for the quantification of choline-related compounds and phospholipids in foods and tissues. J Chromatogr B 911:170–179. doi: 10.1016/j.jchromb.2012.10.038 CrossRefGoogle Scholar
  31. 31.
    Zhu C, Dane A, Spijksma G, Wang M, van der Greef J, Luo G, Hankemeier T, Vreeken RJ (2012) An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column. J Chromatogr A 1220:26–34. doi: 10.1016/j.chroma.2011.11.034 CrossRefGoogle Scholar
  32. 32.
    Okazaki Y, Kamide Y, Hirai MY, Saito K (2013) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 9:121–131. doi: 10.1007/s11306-011-0318-z CrossRefGoogle Scholar
  33. 33.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi: 10.1139/o59-099 CrossRefGoogle Scholar
  34. 34.
    Donato P, Cacciola F, Cichello F, Russo M, Dugo P, Mondello L (2011) Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J Chromatogr A 1218:6476–82. doi: 10.1016/j.chroma.2011.07.036 CrossRefGoogle Scholar
  35. 35.
    Russo M, Cichello F, Ragonese C, Donato P, Cacciola F, Dugo P, Mondello L (2013) Profiling and quantifying polar lipids in milk by hydrophilic interaction liquid chromatography coupled with evaporative light-scattering and mass spectrometry detection. Anal Bioanal Chem 405:4617–26. doi: 10.1007/s00216-012-6699-7 CrossRefGoogle Scholar
  36. 36.
    Lee JY, Min HK, Moon MH (2011) Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 400:2953–2961. doi: 10.1007/s00216-011-4958-7 CrossRefGoogle Scholar
  37. 37.
    Hsu F-F, Turk J (2009) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 877:2673–2695. doi: 10.1016/j.jchromb.2009.02.033 CrossRefGoogle Scholar
  38. 38.
    Xia Y, Jemal M (2009) Phospholipids in liquid chromatography/mass spectrometry bioanalysis: comparison of three tandem mass spectrometric techniques for monitoring plasma. Rapid Commun Mass Spectrom 23:2125–2138. doi: 10.1002/rcm CrossRefGoogle Scholar
  39. 39.
    Han X, Gross RW (1996) Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J Am Chem Soc 118:451–457. doi: 10.1021/ja952326r CrossRefGoogle Scholar
  40. 40.
    Dong J, Cai X, Zhao L, Xue X, Zou L, Zhang X, Liang X (2010) Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics 6:478–488. doi: 10.1007/s11306-010-0215-x CrossRefGoogle Scholar
  41. 41.
    Khaselev N, Murphy RC (2000) Electrospray ionization mass spectrometry of lysoglycerophosphocholine lipid subclasses. J Am Soc Mass Spectrom 11:283–291. doi: 10.1016/S1044-0305(99)00158-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sara Granafei
    • 1
  • Ilario Losito
    • 1
    • 2
  • Francesco Palmisano
    • 1
    • 2
  • Tommaso R. I. Cataldi
    • 1
    • 2
    Email author
  1. 1.Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroBariItaly
  2. 2.Centro di Ricerca Interdipartimentale S.M.A.R.T.Università degli Studi di Bari Aldo MoroBariItaly

Personalised recommendations