Skip to main content
Log in

Identification of sulforhodamine B photodegradation products present in nonpermanent tattoos by micro liquid chromatography coupled with tandem high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article deals with the photodegradation of sulforhodamine B, a dye widely used in nonpermanent tattoos. Degradation evidence was obtained from both aqueous and sweat-simulating solutions of the dye after 9 days of Solarbox irradiation. The identification of the degradation products was achieved using a nontarget approach. For this purpose, a micro liquid chromatography method coupled with tandem high-resolution mass spectrometry was developed. In addition, the chemical structures of five degradation products and two dye impurities were elucidated. The degradation products were the same for both types of solution, whereas the degradation rate of the dye in sweat-simulating solution was slightly faster than that in aqueous solution. The method was also applied to samples of tattooed pigskin subjected to irradiation, in order to better simulate the irradiation effects on the dye used on the skin. None of the degradation products found in the sulforhodamine B solutions were identified in the degraded tattooed pigskin samples, but a new signal at m/z 637.3051 (positive ionization) was found, and the structure of the corresponding molecule was elucidated. The mutagenicity of the photodegradation products was evaluated using a quantitative structure–activity relationship approach, which gave negative results for all the structures elucidated.

Comparison between tattoed pigskin before and after photodegration process. Strategies for the identification of sulforhodamine B degradation products

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Forte G, Petrucci F, Cristaudo A, Bocca B (2009) Market survey on toxic metals contained in tattoo inks. Sci Total Environ 407:5997–6002

    Article  CAS  Google Scholar 

  2. Brown KM, Perlmutter P, McDermott RJ (2000) Youth and tattoos: what school health personnel should know. J Sch Health 70:355–360

    Article  CAS  Google Scholar 

  3. Drews DR, Allison CK, Probst JR (2000) Behavioral and self-concept differences in tattooed and nontattooed college students. Psychol Rep 86:475–481

    Article  CAS  Google Scholar 

  4. Marcoux D (2000) Appearance, cosmetics, and body art in adolescents. Dermatol Clin 18:667–673

    Article  CAS  Google Scholar 

  5. Ceniceros S (1998) Tattooing, body piercing, and Russian roulette. J Nerv Ment Dis 186:503–504

    Article  CAS  Google Scholar 

  6. Greif J, Hewitt W (1998) The living canvas. Adv Nurse Pract 6:26–31

    CAS  Google Scholar 

  7. Armstrong ML, Masten Y, Martin R (2000) Adolescent pregnancy, tattooing, and risk taking. MCN Am J Matern Child Nurs 25:258–261

    Article  CAS  Google Scholar 

  8. Armstrong ML, Murphy KP, Sallee A, Watson G (2000) Tattooed army soldiers: examining the incidence, behavior, and risk. Mil Med 165:135–141

    CAS  Google Scholar 

  9. Anderson RR (2001) Regarding tattoos: is that sunlight, or an oncoming train at the end of the tunnel? Arch Dermatol 137:210–212

    CAS  Google Scholar 

  10. Ferguson JE, Andrew SM, Jones CJP, August PJ (1997) The Q-switched neodymium:YAG laser and tattoos: a microscopic analysis of laser-tattoo interactions. Br J Dermatol 137:405–410

    Article  CAS  Google Scholar 

  11. Timko AL, Miller CH, Johnson FB, Ross E (2001) In vitro quantitative chemical analysis of tattoo pigments. Arch Dermatol 137:143–147

    CAS  Google Scholar 

  12. Friedman T, Westreich M, Mozes SN, Dorenbaum A, Herman O (2003) Tattoo pigment in lymph nodes mimicking metastatic malignant melanoma. Plast Reconstr Surg 111:2120–2122

    Article  Google Scholar 

  13. Moehrle M, Blaheta HJ, Ruck P (2001) Tattoo pigment mimics positive sentinel lymph node in melanoma. Dermatology 203:342–344

    Article  CAS  Google Scholar 

  14. Mangas C, Fernandez-Figueras MT, Carrascosa JM, Soria X, Paradelo C, Ferrendiz C, Just M (2007) A tattoo reaction in a sentinel lymph node from a patient with melanoma. Dermatol Surg 33:766–767

    CAS  Google Scholar 

  15. Cui Y, Spann AP, Couch LH, Gopee NV, Evans FE, Churchwell MI, Williams LD, Doerge DR, Howard PC (2004) Photodecomposition of Pigment Yellow 74, a pigment used in tattoo inks. Photochem Photobiol 80:175–184

    Article  CAS  Google Scholar 

  16. Vasold R, Naarmann N, Ulrich H, Fischer D, Könlg B, Landthaler M, Bäumler W (2004) Tattoo pigments are cleaved by laser light-the chemical analysis in vitro provide evidence for hazardous compounds. Photochem Photobiol 80:185–190

    Article  CAS  Google Scholar 

  17. Engel F, Santarelli F, Vasold R, Maisch T, Ulrich H, Prantl L, Köning B, Landthaler M, Bäumler W (2008) Modern tattoos cause high concentrations of hazardous pigments in skin. Contact Dermatitis 58:228–233

    Article  Google Scholar 

  18. Engel F, Santarelli F, Vasold R, Ulrich H, Maisch T, Köning B, Landthaler M, Gopee NV, Howard PC, Bäumler W (2006) Establishment of an extraction method for the recovery of tattoo pigments from human skin using HPLC diode array detector technology. Anal Chem 78:6440–6447

    Article  CAS  Google Scholar 

  19. League of Permanent Cosmetic Providers (2014) Organic permanent makeup pigment. http://lpcp.org/organic-permanent-make-up-pigment/. Accessed 22 Nov 2014

  20. Engel E, Spannberger A, Vasold R, Köning B, Landthaler M, Bäumler W (2007) Photochemical cleavage of a tattoo pigment by UVB radiation or natural sunlight. J Dtsch Dermatol Ges 5:583–589

    Article  Google Scholar 

  21. de Groot AC (2013) Side-effects of henna and semi-permanent “black henna” tattoos: a full review. Contact Dermatatitis 69:1–25

    Article  Google Scholar 

  22. Rastogi SC, Johansen JD (2005) Colourants in transferable picture tattoos for the skin. Contact Dermatitis 53:207–210

    Article  Google Scholar 

  23. Onder M (2004) Temporary holiday tattoos may cause life long allergic contact dermatitis when henna is mixed with PPD. J Cosmet Dermatol 2:126–130

    Article  Google Scholar 

  24. Madan V, Beck MH (2005) Contact allergy to octocrylene in sunscreen with recurrence from passive transfer to a cosmetic. Contact Dermatitis 53:241–242

    Article  CAS  Google Scholar 

  25. Hayakawa R, Fujimoto Y, Kaniwa M (1994) Allergic pigmented lip dermatitis from lithol rubine BCA. Am J Contact Dermat 5:34–37

    Article  Google Scholar 

  26. Gosetti F, Chiuminatto U, Mazzucco E, Calabrese G, Gennaro MC, Marengo E (2012) Identification of photodegradation products of Allura Red AC (E129) in a beverage by ultra high performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Anal Chim Acta 746:84–89

    Article  CAS  Google Scholar 

  27. Gosetti F, Chiuminatto U, Mazzucco E, Calabrese G, Gennaro MC, Marengo E (2013) Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry. Food Chem 136:617–623

    Article  CAS  Google Scholar 

  28. Gosetti F, Gianotti V, Angioi S, Polati S, Marengo E, Gennaro MC (2004) Oxidative degradation of food dye E133 Brilliant Blue FCF Liquid chromatography–electrospray mass spectrometry identification of the degradation pathway. J Chromatogr A 1054:379–387

    CAS  Google Scholar 

  29. Gianotti V, Angioi S, Gosetti F, Marengo E, Gennaro MC (2005) Chemometrically assisted development of IP-RP-HPLC and spectrophotometric methods for the identification and determination of synthetic dyes in commercial soft drinks. J Liq Chromatogr Relat Technol 28:923–937

    Article  CAS  Google Scholar 

  30. Gosetti F, Gianotti V, Polati S, Gennaro MC (2005) HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. J Chromatogr A 1090:107–115

    Article  CAS  Google Scholar 

  31. Gosetti F, Frascarolo P, Mazzucco E, Gianotti V, Bottaro M, Gennaro MC (2008) Photodegradation of E110 and E122 dyes in a commercial aperitif. A high performance liquid chromatography–diode array–tandem mass spectrometry study. J Chromatogr A 1202:58–63

    Article  CAS  Google Scholar 

  32. Scientific Committee on Cosmetic Products (2004) Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers concerning Acid Red 52. SCCNFP/0803/04

  33. Sosted H, Basketter DA, Estrada E, Johansen JD, Patlewicz GY (2004) Ranking of hair dye substances according to predicted sensitization potency-quantitative structure-activity relationships. Contact Dermatitis 51:241–254

    Article  CAS  Google Scholar 

  34. Piunti F, Mucci N, Innocenti R, Fornaro G, Colonna GM, Bartolini G, Marchesi E (2004) Qualità ecotossicologica di manufatti tessili: studio interlaboratorio sul controllo di residui di metalli pesanti. Prev Oggi 2:51–66

    Google Scholar 

  35. Gosetti F, Chiuminatto U, Mazzucco E, Mastroianni R, Marengo E (2015) Ultra-high-performance chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: Identification of degradation products by using principal component analysis/discriminant analysis. Food Chem 167:454–462

    Article  CAS  Google Scholar 

  36. Rajalakshmi S, Pitchaimuthu S, Kannan N, Velusamy P (2014) Enhanced photocatalytic activity of metal oxide/β-cyclodextrin nanocomposites for decoloration of rhodamine B dye under solar light irradiation. Appl Water Sci. doi:10.1007/s13201-014-0223-5

    Google Scholar 

  37. Patrick W, Dietmar S (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. Photochem Photobiol A 185:19–25

    Article  Google Scholar 

  38. Keum YS, Kim JH, Li QX (2003) Relationship between singlet oxygen formation and photolysis of phloxine B in aqueous solutions. J Photosci 10:219–223

    CAS  Google Scholar 

  39. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of rhodamine B dye. Chem Eng J 169:126–134

    Article  CAS  Google Scholar 

  40. He Z, Yang S, Ju Y, Sun C (2009) Microwave photocatalytic degradation of rhodamine B using TiO2 supported on activated carbon: mechanism implication. J Environ Sci 21:268–272

    Article  CAS  Google Scholar 

  41. Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113:10024–10032

    Article  CAS  Google Scholar 

  42. Ravera M, Musso D, Gosetti F, Cassino C, Gamalero E, Osella D (2010) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by UV-photolysis in the absence and presence of H2O2. Chemosphere 79:144–14843

    Article  CAS  Google Scholar 

  43. Benigni R, Bossa C (2008) Predictivity of QSAR. J Chem Inf Model 48:971–980

    Article  CAS  Google Scholar 

  44. Modi S, Li J, Malcomber S, Moore C, Scott A, White A, Carmichael P (2012) Integrated in silico approaches for the prediction of Ames test mutagenicity. J Comput Aided Mol Des 26:1017–1033

    CAS  Google Scholar 

  45. Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T (2011) Comparative evaluation of in silico systems for Ames test mutagenicity prediction: scope and limitations. Chem Res Toxicol 24:843–854

    Article  CAS  Google Scholar 

  46. Votano JR, Parham M, Hall LH, Kier LB, Oloff S, Tropsha A, Xie Q, Tong W (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377

    Article  CAS  Google Scholar 

  47. Cassano A, Raitano G, Mombelli E, Fernàndez A, Cester J, Roncaglioni A, Benfenat E (2014) Evaluation of QSAR models for the prediction of Ames test genotoxicity: a retrospective exercise on the chemical substances registered under the EU REACH regulation. J Environ Sci Health C 32:273–298

    Article  Google Scholar 

  48. US Environmental Protection Agency (2012) User’s guide for T.E.S.T. (version 4.1) (Toxicity Estimation Software Tool). http://www.epa.gov/nrmrl/std/qsar/TEST-user-guide-v41.pdf. Accessed 22 Nov 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Gosetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosetti, F., Bolfi, B. & Marengo, E. Identification of sulforhodamine B photodegradation products present in nonpermanent tattoos by micro liquid chromatography coupled with tandem high-resolution mass spectrometry. Anal Bioanal Chem 407, 4649–4659 (2015). https://doi.org/10.1007/s00216-015-8667-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8667-5

Keywords

Navigation