Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 4995–5007 | Cite as

Applications of ion-mobility mass spectrometry for lipid analysis

  • Giuseppe Paglia
  • Michal Kliman
  • Emmanuelle Claude
  • Scott Geromanos
  • Giuseppe AstaritaEmail author
Part of the following topical collections:
  1. Lipidomics


The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS–MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS–MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS–MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS–MS data for qualitative and quantitative applications. Here we review the current approaches for lipidomics research based on IMS–MS, including liquid chromatography–MS and direct-MS analyses of “shotgun” lipidomics and MS imaging.


Lipid Lipidomics Ion mobility Mass spectrometry 


  1. 1.
    Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14. doi: 10.1194/jlr.R800095-JLR200 Google Scholar
  2. 2.
    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–3305. doi: 10.1194/jlr.M009449 Google Scholar
  3. 3.
    Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365(19):1812–1823. doi: 10.1056/NEJMra1104901 Google Scholar
  4. 4.
    Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610. doi: 10.1038/nrd1776 Google Scholar
  5. 5.
    Witting M, Maier TV, Garvis S, Schmitt-Kopplin P (2014) Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2 μm core–shell particle for in depth lipidomic profiling of Caenorhabditis elegans. J Chromatogr A 1359:91–99. doi: 10.1016/j.chroma.2014.07.021 Google Scholar
  6. 6.
    Brown HA, Murphy RC (2009) Working towards an exegesis for lipids in biology. Nat Chem Biol 5(9):602–606Google Scholar
  7. 7.
    Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598. doi: 10.1038/nrm2934 Google Scholar
  8. 8.
    Shah V, Castro-Perez JM, McLaren DG, Herath KB, Previs SF, Roddy TP (2013) Enhanced data-independent analysis of lipids using ion mobility-TOFMSE to unravel quantitative and qualitative information in human plasma. Rapid Commun Mass Spectrom 27(19):2195–2200. doi: 10.1002/rcm.6675 Google Scholar
  9. 9.
    Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401(1):115–125. doi: 10.1007/s00216-011-5090-4 Google Scholar
  10. 10.
    Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res 55(8):1772–1783. doi: 10.1194/jlr.D047795 Google Scholar
  11. 11.
    Kim HI, Kim H, Pang ES, Ryu EK, Beegle LW, Loo JA, Goddard WA, Kanik I (2009) Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry. Anal Chem 81(20):8289–8297. doi: 10.1021/ac900672a Google Scholar
  12. 12.
    Castro-Perez J, Roddy TP, Nibbering NM, Shah V, McLaren DG, Previs S, Attygalle AB, Herath K, Chen Z, Wang SP, Mitnaul L, Hubbard BK, Vreeken RJ, Johns DG, Hankemeier T (2011) Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom 22(9):1552–1567. doi: 10.1007/s13361-011-0172-2 Google Scholar
  13. 13.
    Kaur-Atwal G, Reynolds JC, Mussell C, Champarnaud E, Knapman TW, Ashcroft AE, O'Connor G, Christie SD, Creaser CS (2011) Determination of testosterone and epitestosterone glucuronides in urine by ultra performance liquid chromatography-ion mobility-mass spectrometry. Analyst 136(19):3911–3916. doi: 10.1039/c1an15450h Google Scholar
  14. 14.
    Ahonen L, Fasciotti M, Gennas GB, Kotiaho T, Daroda RJ, Eberlin M, Kostiainen R (2013) Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A 1310:133–137. doi: 10.1016/j.chroma.2013.08.056 Google Scholar
  15. 15.
    Dong L, Shion H, Davis RG, Terry-Penak B, Castro-Perez J, van Breemen RB (2010) Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal Chem 82(21):9014–9021. doi: 10.1021/ac101974g Google Scholar
  16. 16.
    Domalain V, Hubert-Roux M, Lange CM, Baudoux J, Rouden J, Afonso C (2014) Use of transition metals to improve the diastereomers differentiation by ion mobility and mass spectrometry. J Mass Spectrom 49(5):423–427. doi: 10.1002/jms.3349 Google Scholar
  17. 17.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22. doi: 10.1002/jms.1383 Google Scholar
  18. 18.
    Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32(1):43–71. doi: 10.1002/mas.21349 Google Scholar
  19. 19.
    Cohen MJ, Karasek FW (1970) Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8(6):330–337. doi: 10.1093/chromsci/8.6.330 Google Scholar
  20. 20.
    Giles K (2013) Travelling wave ion mobility. Int J Ion Mobil Spectrom 16(1):1–3. doi: 10.1007/s12127-013-0125-5 Google Scholar
  21. 21.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414. doi: 10.1002/rcm.1641 Google Scholar
  22. 22.
    Shvartsburg AA (2008) Differential mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC, Boca RatonGoogle Scholar
  23. 23.
    May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436. doi: 10.1021/ac504720m Google Scholar
  24. 24.
    Wyttenbach T, von Helden G, Bowers MT (1996) Gas-phase conformation of biological molecules: bradykinin. J Am Chem Soc 118(35):8355–8364Google Scholar
  25. 25.
    Clemmer DE, Hudgins RR, Jarrold MF (1995) Naked protein conformations: cytochrome c in the gas phase. J Am Soc Mass Spectrom 117:10141–10142Google Scholar
  26. 26.
    Hoaglund-Hyzer CS, Counterman AE, Clemmer DE (1999) Anhydrous protein ions. Chem Rev 99(10):3037–3080Google Scholar
  27. 27.
    Lee S, Wyttenbach T, Bowers MT (1997) Gas phase structures of sodiated oligosaccharides by ion mobility/ion chromatography methods. Int J Mass Spectrom Ion Process 167–168:605–614Google Scholar
  28. 28.
    Gidden J, Bushnell JE, Bowers MT (2001) Gas-phase conformations and folding energetics of oligonucleotides: dTG- and dGT. J Am Chem Soc 123(23):5610–5611Google Scholar
  29. 29.
    Valentine SJ, Plasencia MD, Liu X, Krishnan M, Naylor S, Udseth HR, Smith RD, Clemmer DE (2006) Toward plasma proteome profiling with ion mobility-mass spectrometry. J Proteome Res 5(11):2977–2984. doi: 10.1021/pr060232i Google Scholar
  30. 30.
    Ruotolo BT, Gillig KJ, Woods AS, Egan TF, Ugarov MV, Schultz JA, Russell DH (2004) Analysis of phosphorylated peptides by ion mobility-mass spectrometry. Anal Chem 76(22):6727–6733. doi: 10.1021/ac0498009 Google Scholar
  31. 31.
    Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3(7):1139–1152. doi: 10.1038/nprot.2008.78 Google Scholar
  32. 32.
    Malkar A, Devenport NA, Martin HJ, Patel P, Turner MA, Watson P, Maughan RJ, Reid HJ, Sharp BL, Thomas CLP, Reynolds JC, Creaser CS (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry. Metabolomics 9(6):1192–1201. doi: 10.1007/s11306-013-0541-x Google Scholar
  33. 33.
    Dwivedi P, Schultz AJ, Hill HH (2010) Metabolic profiling of human blood by high resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298(1-3):78–90. doi: 10.1016/j.ijms.2010.02.007 Google Scholar
  34. 34.
    Dwivedi P, Puzon G, Tam M, Langlais D, Jackson S, Kaplan K, Siems WF, Schultz AJ, Xun L, Woods A, Hill HH Jr (2010) Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J Mass Spectrom 45(12):1383–1393. doi: 10.1002/jms.1850 Google Scholar
  35. 35.
    Kaplan K, Dwivedi P, Davidson S, Yang Q, Tso P, Siems W, Hill HH Jr (2009) Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Anal Chem 81(19):7944–7953. doi: 10.1021/ac901030k Google Scholar
  36. 36.
    Harry EL, Weston DJ, Bristow AW, Wilson ID, Creaser CS (2008) An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. J Chromatogr B 871(2):357–361. doi: 10.1016/j.jchromb.2008.04.043 Google Scholar
  37. 37.
    Jackson SN, Wang HY, Woods AS, Ugarov M, Egan T, Schultz JA (2005) Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. J Am Soc Mass Spectrom 16(2):133–138. doi: 10.1016/j.jasms.2004.10.002 Google Scholar
  38. 38.
    Dwivedi P, Wu P, Klopsch SJ, Puzon GJ, Xun L, Hill HH Jr (2008) Metabolic profiling by ion mobility-mass spectrometry (IMMS). Metabolomics 4:63–80. doi: 10.1007/s11306-007-0093-z Google Scholar
  39. 39.
    May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86(4):2107–2116. doi: 10.1021/ac4038448 Google Scholar
  40. 40.
    Mason EA, McDaniel EW (1998) Transport properties of ions in gases. Wiley-VCH, WeinheimGoogle Scholar
  41. 41.
    Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, Rodger PM, Sadler PJ (2009) Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: ion mobility mass spectrometry and modeling. J Am Soc Mass Spectrom 20(6):1119–1122. doi: 10.1016/j.jasms.2009.02.016 Google Scholar
  42. 42.
    Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394(1):235–244. doi: 10.1007/s00216-009-2666-3 Google Scholar
  43. 43.
    Bush MF, Campuzano ID, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84(16):7124–7130. doi: 10.1021/ac3014498 Google Scholar
  44. 44.
    Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84(2):1026–1033. doi: 10.1021/ac202625t Google Scholar
  45. 45.
    Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarita G (2015) Ion-mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87(2):1137–1144. doi: 10.1021/ac503715v Google Scholar
  46. 46.
    Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993. doi: 10.1021/ac500405x Google Scholar
  47. 47.
    Stow SM, Goodwin CR, Kliman M, Bachmann BO, McLean JA, Lybrand TP (2014) Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections. J Phys Chem B 118(48):13812–13820. doi: 10.1021/jp509398e Google Scholar
  48. 48.
    Paglia G, Menikarachchi L, Langridge J, Astarita G (2014) Travelling-wave ion mobility-MS in metabolomics: workflows and bioinformatic tools. In: Rudaz S (ed) Identification and data processing methods in metabolomics. Future Medicine, London. doi: 10.4155/FSEB2013.14.224 Google Scholar
  49. 49.
    Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem 100:16082–16086Google Scholar
  50. 50.
    Shvartsburg A, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261:86–91Google Scholar
  51. 51.
    Wyttenbach T, von Helden G, Batka JJ, Carlat D, Bowers MT (1997) Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom 8(3):275–282Google Scholar
  52. 52.
    von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97(31):8182–8192Google Scholar
  53. 53.
    von Helden G, Wyttenbach T, Bowers MT (1995) Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267(5203):1483–1485Google Scholar
  54. 54.
    Jackson SN, Ugarov M, Post JD, Egan T, Langlais D, Schultz JA, Woods AS (2008) A study of phospholipids by ion mobility TOFMS. J Am Soc Mass Spectrom 19(11):1655–1662. doi: 10.1016/j.jasms.2008.07.005 Google Scholar
  55. 55.
    Ridenour WB, Kliman M, McLean JA, Caprioli RM (2010) Structural characterization of phospholipids and peptides directly from tissue sections by MALDI traveling-wave ion mobility-mass spectrometry. Anal Chem 82(5):1881–1889. doi: 10.1021/ac9026115 Google Scholar
  56. 56.
    Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11):935–945. doi: 10.1016/j.bbalip.2011.05.016 Google Scholar
  57. 57.
    Furse KE, Pratt DA, Schneider C, Brash AR, Porter NA, Lybrand TP (2006) Molecular dynamics simulations of arachidonic acid-derived pentadienyl radical intermediate complexes with COX-1 and COX-2: insights into oxygenation regio- and stereoselectivity. Biochemistry 45(10):3206–3218. doi: 10.1021/bi052338h Google Scholar
  58. 58.
    Furse KE, Pratt DA, Porter NA, Lybrand TP (2006) Molecular dynamics simulations of arachidonic acid complexes with COX-1 and COX-2: insights into equilibrium behavior. Biochemistry 45(10):3189–3205. doi: 10.1021/bi052337p Google Scholar
  59. 59.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. doi: 10.1021/ja00124a002 Google Scholar
  60. 60.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. doi: 10.1002/jcc.21287 Google Scholar
  61. 61.
    Anderson SE, Bleiholder C, Brocker ER, Stang PJ, Bowers MT (2012) A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (III): application to supramolecular coordination-driven assemblies with complex shapes. Int J Mass Spectrom 330–332:78–84Google Scholar
  62. 62.
    Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE (2010) Considerations in experimental and theoretical collision cross-section measurements of small molecules using travelling wave ion mobility spectrometry-mass spectrometry. Int J Mass Spectrom 298(1-3):17–23Google Scholar
  63. 63.
    Larriba C, Hogan CJ Jr (2013) Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation. J Comput Phys 251:344–363Google Scholar
  64. 64.
    Fu W, Magnusdottir M, Brynjolfson S, Palsson BO, Paglia G (2012) UPLC-UV-MS(E) analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Anal Bioanal Chem 404(10):3145–3154. doi: 10.1007/s00216-012-6434-4 Google Scholar
  65. 65.
    Castro-Perez JM, Kamphorst J, DeGroot J, Lafeber F, Goshawk J, Yu K, Shockcor JP, Vreeken RJ, Hankemeier T (2010) Comprehensive LC-MSE lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J Proteome Res 9(5):2377–2389. doi: 10.1021/pr901094j Google Scholar
  66. 66.
    Valentine SJ, Koeniger SL, Clemmer DE (2003) A split-field drift tube for separation and efficient fragmentation of biomolecular ions. Anal Chem 75(22):6202–6208. doi: 10.1021/ac030111r Google Scholar
  67. 67.
    Hoaglund-Hyzer CS, Li J, Clemmer DE (2000) Mobility labeling for parallel CID of ion mixtures. Anal Chem 72(13):2737–2740Google Scholar
  68. 68.
    Chong WP, Goh LT, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, Ho YS (2009) Metabolomics profiling of extracellular metabolites in recombinant Chinese hamster ovary fed-batch culture. Rapid Commun Mass Spectrom 23(23):3763–3771. doi: 10.1002/rcm.4328 Google Scholar
  69. 69.
    Gonzales GB, Raes K, Coelus S, Struijs K, Smagghe G, Van Camp J (2014) Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J Chromatogr A 1323:39–48. doi: 10.1016/j.chroma.2013.10.077 Google Scholar
  70. 70.
    Garmón-Lobato S, Abad-García B, Sánchez-Ilárduya MB, Romera-Fernández M, Berrueta LA, Gallo B, Vicente F (2010) Improvement using chemometrics in ion mobility coupled to mass spectrometry as a tool for mass spectrometry fragmentation studies: flavonoid aglycone cases. Anal Chim Acta 771:56–64Google Scholar
  71. 71.
    Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11(2):167–170. doi: 10.1038/nmeth.2767 Google Scholar
  72. 72.
    Geromanos SJ, Hughes C, Ciavarini S, Vissers JPC, Langridge JI (2012) Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal Chem 404(4):1127–1139. doi: 10.1007/s00216-012-6197-y Google Scholar
  73. 73.
    Bond NJ, Shliaha PV, Lilley KS, Gatto L (2013) Improving qualitative and quantitative performance for MS(E)-based label-free proteomics. J Proteome Res 12(6):2340–2353. doi: 10.1021/pr300776t Google Scholar
  74. 74.
    Baker PR, Armando AM, Campbell JL, Quehenberger O, Dennis EA (2014) Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J Lipid Res 55(11):2432–2442. doi: 10.1194/jlr.D051581 Google Scholar
  75. 75.
    Lintonen TP, Baker PR, Suoniemi M, Ubhi BK, Koistinen KM, Duchoslav E, Campbell JL, Ekroos K (2014) Differential mobility spectrometry-driven shotgun lipidomics. Anal Chem 86(19):9662–9669. doi: 10.1021/ac5021744 Google Scholar
  76. 76.
    Churchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J Chromatogr B 825(2):134–143. doi: 10.1016/j.jchromb.2005.05.037 Google Scholar
  77. 77.
    Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20(13):1989–1994. doi: 10.1002/rcm.2550 Google Scholar
  78. 78.
    Swartz ME (2005) UPLC™: an introduction and review. J Liq Chromatogr Relat Technol 28:1253–1263Google Scholar
  79. 79.
    Jones MD, Rainville PD, Isaac G, Wilson ID, Smith NW, Plumb RS (2014) Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile. J Chromatogr B 966:200–207. doi: 10.1016/j.jchromb.2014.04.017 Google Scholar
  80. 80.
    Novakova L, Chocholous P, Solich P (2014) Ultra-fast separation of estrogen steroids using subcritical fluid chromatography on sub-2-micron particles. Talanta 121:178–186. doi: 10.1016/j.talanta.2013.12.056 Google Scholar
  81. 81.
    Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem 61:192–206. doi: 10.1016/j.trac.2014.04.017 Google Scholar
  82. 82.
    Lee JW, Nagai T, Gotoh N, Fukusaki E, Bamba T (2014) Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr B 966:193–199. doi: 10.1016/j.jchromb.2014.01.040 Google Scholar
  83. 83.
    Lee JW, Nishiumi S, Yoshida M, Fukusaki E, Bamba T (2013) Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J Chromatogr A 1279:98–107. doi: 10.1016/j.chroma.2013.01.020 Google Scholar
  84. 84.
    Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 1250:212–219. doi: 10.1016/j.chroma.2012.05.068 Google Scholar
  85. 85.
    Dear GJ, Munoz-Muriedas J, Beaumont C, Roberts A, Kirk J, Williams JP, Campuzano I (2010) Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun Mass Spectrom 24(21):3157–3162. doi: 10.1002/rcm.4742 Google Scholar
  86. 86.
    Wickramasekara SI, Zandkarimi F, Morre J, Kirkwood J, Legette L, Jiang Y, Gombart AF, Stevens JF, Maier CS (2013) Electrospray quadrupole travelling wave ion mobility time-of-flight mass spectrometry for the detection of plasma metabolome changes caused by xanthohumol in obese Zucker (fa/fa) rats. Metabolites 3(3):701–717. doi: 10.3390/metabo3030701 Google Scholar
  87. 87.
    Pacini T, Fu W, Gudmundsson S, Chiaravalle AE, Brynjolfson S, Palsson BO, Astarita G, Paglia G (2015) Multidimensional analytical approach based on UHPLC-UV-ion mobility-MS for the screening of natural pigments. Anal Chem 87(5):2593–2599. doi: 10.1021/ac504707n Google Scholar
  88. 88.
    Woods AS, Ugarov M, Egan T, Koomen J, Gillig KJ, Fuhrer K, Gonin M, Schultz JA (2004) Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal Chem 76(8):2187–2195. doi: 10.1021/ac035376k Google Scholar
  89. 89.
    Shvartsburg AA, Isaac G, Leveque N, Smith RD, Metz TO (2011) Separation and classification of lipids using differential ion mobility spectrometry. J Am Soc Mass Spectrom 22(7):1146–1155. doi: 10.1007/s13361-011-0114-z Google Scholar
  90. 90.
    Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592Google Scholar
  91. 91.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12Google Scholar
  92. 92.
    McLean JR, McLean JA, Wu Z, Becker C, Perez LM, Pace CN, Scholtz JM, Russell DH (2010) Factors that influence helical preferences for singly charged gas-phase peptide ions: the effects of multiple potential charge-carrying sites. J Phys Chem B 114(2):809–816. doi: 10.1021/jp9105103 Google Scholar
  93. 93.
    Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto, Calif) 1:293–327. doi: 10.1146/annurev.anchem.1.031207.113001 Google Scholar
  94. 94.
    Shrestha B, Vertes A (2014) High-throughput cell and tissue analysis with enhanced molecular coverage by laser ablation electrospray ionization mass spectrometry using ion mobility separation. Anal Chem 86(9):4308–4315. doi: 10.1021/ac500007t Google Scholar
  95. 95.
    Campbell JL, Le Blanc JC, Schneider BB (2012) Probing electrospray ionization dynamics using differential mobility spectrometry: the curious case of 4-aminobenzoic acid. Anal Chem 84(18):7857–7864. doi: 10.1021/ac301529w Google Scholar
  96. 96.
    Jin W, Jarvis M, Star-Weinstock M, Altemus M (2013) A sensitive and selective LC-differential mobility-mass spectrometric analysis of allopregnanolone and pregnanolone in human plasma. Anal Bioanal Chem 405(29):9497–9508. doi: 10.1007/s00216-013-7391-2 Google Scholar
  97. 97.
    Maccarone AT, Duldig J, Mitchell TW, Blanksby SJ, Duchoslav E, Campbell JL (2014) Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. J Lipid Res 55(8):1668–1677. doi: 10.1194/jlr.M046995 Google Scholar
  98. 98.
    Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298(1-3):45–54. doi: 10.1016/j.ijms.2010.01.006 Google Scholar
  99. 99.
    Campbell JL, Zhu M, Hopkins WS (2014) Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers. J Am Soc Mass Spectrom 25(9):1583–1591. doi: 10.1007/s13361-014-0939-3 Google Scholar
  100. 100.
    Fasciotti M, Sanvido GB, Santos VG, Lalli PM, McCullagh M, de Sa GF, Daroda RJ, Peter MG, Eberlin MN (2012) Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. J Mass Spectrom 47(12):1643–1647. doi: 10.1002/jms.3089 Google Scholar
  101. 101.
    Lalli PM, Corilo YE, Fasciotti M, Riccio MF, de Sa GF, Daroda RJ, Souza GH, McCullagh M, Bartberger MD, Eberlin MN, Campuzano ID (2013) Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. J Mass Spectrom 48(9):989–997. doi: 10.1002/jms.3245 Google Scholar
  102. 102.
    Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22(10):1503–1509. doi: 10.1002/rcm.3498 Google Scholar
  103. 103.
    Djidja MC, Claude E, Snel MF, Francese S, Scriven P, Carolan V, Clench MR (2010) Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397(2):587–601. doi: 10.1007/s00216-010-3554-6 Google Scholar
  104. 104.
    Krechmer J, Neeson KJ, Isaac G, Tice J, Gorenstein MV, Millar A, Balogh MP, Langridge J, Astarita G (2013) Real-time lipidomic profiling using desorption ionization with ion mobility. Waters application note. Waters, MilfordGoogle Scholar
  105. 105.
    Galhena AS, Harris GA, Kwasnik M, Fernandez FM (2010) Enhanced direct ambient analysis by differential mobility-filtered desorption electrospray ionization-mass spectrometry. Anal Chem 82(22):9159–9163. doi: 10.1021/ac102340h Google Scholar
  106. 106.
    Jackson SN, Wang HY, Woods AS (2007) In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 18(1):17–26. doi: 10.1016/j.jasms.2006.08.015 Google Scholar
  107. 107.
    Jackson SN, Wang HY, Woods AS (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16(12):2052–2056. doi: 10.1016/j.jasms.2005.08.014 Google Scholar
  108. 108.
    McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42(8):1099–1105. doi: 10.1002/jms.1254 Google Scholar
  109. 109.
    Li H, Smith BK, Márk L, Nemesa P, Nazarian J, Vertes A (2015) Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Int J Mass Spectrom 377:681–689Google Scholar
  110. 110.
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32(3):218–243. doi: 10.1002/mas.21360 Google Scholar
  111. 111.
    Paglia G, D'Apolito O, Gelzo M, Dello Russo A, Corso G (2010) Direct analysis of sterols from dried plasma/blood spots by an atmospheric pressure thermal desorption chemical ionization mass spectrometry (APTDCI-MS) method for a rapid screening of Smith-Lemli-Opitz syndrome. Analyst 135(4):789–796Google Scholar
  112. 112.
    Paglia G, Ifa DR, Wu C, Corso G, Cooks RG (2010) Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. Anal Chem 82(5):1744–1750. doi: 10.1021/ac902325j Google Scholar
  113. 113.
    Rasanen RM, Dwivedi P, Fernandez FM, Kauppila TJ (2014) Desorption atmospheric pressure photoionization and direct analysis in real time coupled with travelling wave ion mobility mass spectrometry. Rapid Commun Mass Spectrom 28(21):2325–2336. doi: 10.1002/rcm.7028 Google Scholar
  114. 114.
    Williams JP, Scrivens JH (2008) Coupling desorption electrospray ionisation and neutral desorption/extractive electrospray ionisation with a travelling-wave based ion mobility mass spectrometer for the analysis of drugs. Rapid Commun Mass Spectrom 22(2):187–196. doi: 10.1002/rcm.3346 Google Scholar
  115. 115.
    Stopka SA, Shrestha B, Marechal E, Falconet D, Vertes A (2014) Metabolic transformation of microalgae due to light acclimation and genetic modifications followed by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Analyst 139(22):5945–5953. doi: 10.1039/c4an01368a Google Scholar
  116. 116.
    Ahmed A, Cho YJ, No MH, Koh J, Tomczyk N, Giles K, Yoo JS, Kim S (2011) Application of the Mason-Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil. Anal Chem 83(1):77–83. doi: 10.1021/ac101934q Google Scholar
  117. 117.
    Barrère C, Hubert-Roux M, Afonso C, Racaud A (2014) Rapid analysis of lubricants by atmospheric solid analysis probe-ion mobility mass spectrometry. J Mass Spectrom 49(8):709–715. doi: 10.1002/jms.3404 Google Scholar
  118. 118.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175. doi: 10.1038/nature13419 Google Scholar
  119. 119.
    Marcoux J, Wang SC, Politis A, Reading E, Ma J, Biggin PC, Zhou M, Tao H, Zhang Q, Chang G, Morgner N, Robinson CV (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 110(24):9704–9709. doi: 10.1073/pnas.1303888110 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giuseppe Paglia
    • 1
    • 2
  • Michal Kliman
    • 3
  • Emmanuelle Claude
    • 4
  • Scott Geromanos
    • 4
  • Giuseppe Astarita
    • 4
    • 5
    Email author
  1. 1.Istituto Zooprofilattico Sperimentale della Puglia e Della BasilicataFoggiaItaly
  2. 2.Center for Systems BiologyUniversity of IcelandReykjavikIceland
  3. 3.Translational and Bioanalytical Sciences, Non-Clinical DevelopmentAllergan Inc.IrvineUSA
  4. 4.Waters Corporation, Health SciencesMilfordUSA
  5. 5.Department of Biochemistry and Molecular & Cellular BiologyGeorgetown UniversityWashingtonUSA

Personalised recommendations