Skip to main content

Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography–tandem mass spectrometry


A fast and sensitive multianalyte/multiclass high-performance reversed-phase liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous analysis of 89 pharmaceuticals in influent and effluent wastewater samples. The method developed consists of solid-phase extraction (SPE) using a hydrophilic–lipophilic-balanced polymer followed by LC–MS/MS with electrospray ionization in both positive mode and negative mode. The selected pharmaceuticals belong to different classes—analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, β-adrenoceptor-blocking drugs, lipid-regulating agents, statins, and many others. The influence of the mobile phase composition on the sensitivity of the method, and the optimum conditions for SPE in terms of analyte recovery were extensively studied. Chromatographic separation was performed on an Atlantis T3 (100 mm × 2.1 mm, 3-μm) column with a gradient elution using methanol–0.01 % v/v formic acid as the mobile phase in positive ionization mode determination and methanol–acetonitrile–1 mM ammonium formate as the mobile phase in negative ionization mode determination. Recoveries for most of the compounds ranged from 50 to 120 %. Precision, expressed as relative standard deviations, was always below 15 %, and the method detection limits ranged from 1.06 ng/L (4-hydroxyomeprazole) to 211 ng/L (metformin). Finally, the method developed was applied to the determination of target analytes in wastewater samples obtained from the Psyttalia wastewater treatment plant, Athens, Greece. Although SPE of pharmaceuticals from wastewater samples and their determination by LC–MS/MS is a well-established technique, the uniqueness of this study lies in the simultaneous determination of a remarkable number of compounds belonging to more than 20 drug classes. Moreover, the LC–MS/MS method has been thoroughly optimized so that maximum sensitivity is achieved for most of the compounds, making the proposed method a valuable tool for pharmaceutical analysis in influent and effluent wastewater at the sub-nanogram per liter level.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK (2008) Environ Toxicol Chem 27:425–432

    Article  CAS  Google Scholar 

  2. 2.

    US Environmental Protection Agency (2010) Pharmaceuticals and personal care products (PPCPs). Accessed 25 Feb 2015

  3. 3.

    Fent K, Weston AA, Caminada D (2006) Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  4. 4.

    Mompelat S, Le Bot B, Thomas O (2009) Environ Int 35:803–814

    Article  CAS  Google Scholar 

  5. 5.

    Buchberger WW (2011) J Chromatogr A 1218:603–618

    Article  CAS  Google Scholar 

  6. 6.

    Carlsson C, Johansson AK, Alvan G, Bergman K, Kühler T (2006) Sci Total Environ 364:67–87

    Article  CAS  Google Scholar 

  7. 7.

    Cleuvers M (2003) Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  8. 8.

    Nödler K, Licha T, Bester K, Sauter M (2010) J Chromatogr A 1217:6511–6521

    Article  Google Scholar 

  9. 9.

    Gross M, Petrović M, Barceló D (2006) Talanta 70:678–690

    Article  Google Scholar 

  10. 10.

    Tarcomnicu I, van Nuijs ALN, Simons W, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2011) Talanta 83:795–803

    Article  CAS  Google Scholar 

  11. 11.

    Gracia-Lor E, Sanchez JV, Hernandez F (2010) J Chromatogr A 1217:622–632

    Article  CAS  Google Scholar 

  12. 12.

    Huerta-Fontela M, Galceran MT, Ventura F (2010) J Chromatogr A 1217:4212–4222

    Article  CAS  Google Scholar 

  13. 13.

    Lopez-Serna R, Petrović M, Barceló D (2011) Chemosphere 85:1390–1399

    Article  CAS  Google Scholar 

  14. 14.

    Ferrer I, Zweigenbaum JA, Thurman EM (2010) J Chromatogr A 1217:5674–5686

    Article  CAS  Google Scholar 

  15. 15.

    Gros M, Rodríguez-Mozaz S, Barceló D (2012) J Chromatogr A 1248:104–121

    Article  CAS  Google Scholar 

  16. 16.

    Laven M, Alsberg T, Yu Y, Adolfsson-Erici J (2009) J Chromatogr A 1216:49–62

    Article  CAS  Google Scholar 

  17. 17.

    Madureira TV, Barreiro JC, Rocha MJ, Cass QB, Tiritan ME (2009) J Chromatogr A 1216:7033–7042

    Article  CAS  Google Scholar 

  18. 18.

    Rodil R, Quintana JB, Lopez-Mahia P, Muniategui-Lorenzo S, Prada- Rodriguez D (2009) J Chromatogr A 1216:2958–2969

    Article  CAS  Google Scholar 

  19. 19.

    Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J (2012) J Chromatogr A 1268:74–83

    Article  CAS  Google Scholar 

  20. 20.

    Boleda R, Galceran T, Ventura F (2013) J Chromatogr A 1286:146–158

    Article  CAS  Google Scholar 

  21. 21.

    Gilart N, Marcé RM, Borrull F, Fontanals N (2012) J Sep Sci 35:875–882

    Article  CAS  Google Scholar 

  22. 22.

    Gracia-Lor E, Martínez M, Sancho JV, Peñuela G, Hernández F (2012) Talanta 99:1011–1023

    Article  CAS  Google Scholar 

  23. 23.

    Ibanez M, Guerrero C, Sancho JV, Hernandez F (2009) J Chromatogr A 1216:2529–2539

    Article  CAS  Google Scholar 

  24. 24.

    Kim H, Hong Y, Park J, Sharma VK, Cho S (2013) Chemosphere 91:888–894

    Article  CAS  Google Scholar 

  25. 25.

    Dorival-García N, Zafra-Gómez A, Cantarero S, Navalón A, Vílchez JL (2013) Microchem J 106:323–333

    Article  Google Scholar 

  26. 26.

    Togola A, Budzinski H (2008) J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  27. 27.

    Guitart C, Readman JW (2010) Anal Chim Acta 658:32–40

    Article  CAS  Google Scholar 

  28. 28.

    Varga M, Dobor J, Helenkár A, Jurecska L, Yao J, Záray G (2010) Microchem J 95:353–358

    Article  CAS  Google Scholar 

  29. 29.

    Hu R, Yang Z, Zhang L (2011) Talanta 85:1751–1759

    Article  CAS  Google Scholar 

  30. 30.

    Unceta N, Sampedro MC, Abu Bakar NK, Gσmez-Caballero A, Goicolea MA, Barrio RJ (2010) J Chromatogr A 1217:3392–3399

    Article  CAS  Google Scholar 

  31. 31.

    Trenholm RA, Vanderford BJ, Snyder SA (2009) Talanta 79:1425–1432

    Article  CAS  Google Scholar 

  32. 32.

    Basheer C, Lee J, Pedersen-Bjergaard S, Rasmussen KE, Lee HK (2010) J Chromatogr A 1217:6661–6667

    Article  CAS  Google Scholar 

  33. 33.

    Gilart N, Miralles N, Marcé RM, Borrull F, Fontanals N (2013) Anal Chim Acta 774:51–60

    Article  CAS  Google Scholar 

  34. 34.

    Kim DH, Lee DW (2003) J Chromatogr A 984:153–158

    Article  CAS  Google Scholar 

  35. 35.

    Barbosa J, Toro I, Bergés R, Sanz-Nebot V (2001) J Chromatogr A 915:85–96

    Article  CAS  Google Scholar 

  36. 36.

    Rainville PD, Smith NW, Cowan D, Plumb RS (2012) J Pharm Biomed 59:138–150

    Article  CAS  Google Scholar 

  37. 37.

    Llorca M, Gros M, Rodríguez-Mozaz S, Barceló D (2014) J Chromatogr A 1369:43–51

    Article  CAS  Google Scholar 

  38. 38.

    Gros M, Petrovic M, Barcelo D (2009) Anal Chem 81:898–912

    Article  CAS  Google Scholar 

  39. 39.

    WADA Project Team (2003) WADA technical document – TD2003IDCR: identification criteria for qualitative assays.

  40. 40.

    European Commission (2002) Off J Eur Commun L 221:8–36

    Google Scholar 

  41. 41.

    Borecka M, Białk-Bielińska A, Siedlewicz G, Kornowska K, Kumirska J, Stepnowski P, Pazdro K (2013) J Chromatogr A 1304:138–146

    Article  CAS  Google Scholar 

  42. 42.

    Gómez-Pérez ML, Plaza-Bolaños P, Romero-González R, Martínez-Vidal JL, Garrido-Frenich A (2012) J Chromatogr A 1248:130–138

    Article  Google Scholar 

  43. 43.

    Ashcroft AE (1997) In: Barnett NW (ed) Organic mass spectrometry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  44. 44.

    Mutavdžić Pavlović D, Babić S, Dolar D, Ašperger D, Košutić K, Horvat AJM, Kaštelan-Macan M (2010) J Sep Sci 33:258–267

    Article  Google Scholar 

  45. 45.

    Zhang ZL, Zhou JL (2007) J Chromatogr A 1154:205–213

    Article  CAS  Google Scholar 

  46. 46.

    Νováková L, Šatínský D, Solich P (2008) Trends Anal Chem 27:352–367

    Article  Google Scholar 

  47. 47.

    Miao XS, Metcalfe CD (2003) J Chromatogr A 998:133–141

    Article  CAS  Google Scholar 

  48. 48.

    Wu J, Qian X, Yang Z, Zhang L (2010) J Chromatogr A 1217:1471–1475

    Article  CAS  Google Scholar 

  49. 49.

    Scheurer M, Michel A, Brauch HJ, Ruck W, Sacher F (2012) Water Res 46:4790–4802

    Article  CAS  Google Scholar 

  50. 50.

    Martín J, Buchberger W, Santos JL, Alonso E, Aparicio I (2012) J Chromatogr B 895–896:94–101

    Article  Google Scholar 

  51. 51.

    Kosma CI, Lambropoulou DA, Albanis TA (2015) Water Res 70:436–448

    Article  CAS  Google Scholar 

  52. 52.

    Reyes-Contreras C, Matamoros V, Ruiz I, Soto M, Bayona JM (2011) Chemosphere 84:1200–1207

    Article  CAS  Google Scholar 

  53. 53.

    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Anal Bioanal Chem 391:1293–1308

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nikolaos S. Thomaidis.

Additional information

Published in the topical collection Advances in LC-MS/MS Analysis with guest editors Damià Barceló and Mira Petrovic

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 3.16 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasenaki, M.E., Thomaidis, N.S. Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 407, 4229–4245 (2015).

Download citation


  • Pharmaceuticals
  • Wastewater
  • Solid-phase extraction
  • Liquid chromatography–tandem mass spectrometry
  • Mobile phase optimization