Analytical and Bioanalytical Chemistry

, Volume 407, Issue 14, pp 4029–4034 | Cite as

Single gold nanorods as optical probes for spectral imaging

Note
Part of the following topical collections:
  1. Direct Optical Detection

Abstract

In this paper, we explain in detail the wavelength dependence of the elastic scattering pattern of individual, optically isolated gold nanorods by using confocal microscopy in combination with higher order laser modes, i.e., radially/azimuthally polarized laser modes. We demonstrate that the spectral dependence of the scattering pattern is mostly caused by the relative strength of the gold nanorods’ plasmonic modes at different wavelengths. Since the gold nanorods’ plasmonic modes are determined by the particles’ geometrical parameter, e.g., size and aspect ratio, as well as the refractive index of the surrounding medium, we show that the spectral dependence of the scattering pattern is a simple, not invasive way to determine, e.g., the gold nanorod aspect ratio or physical variation of the local environment. Thus, a further development of spectral imaging of gold nanorods can lead to the employment of this technique in biomedical assays involving also living samples.

Keywords

Gold nanorod Particle plasmon Elastic scattering Confocal microscopy Optical detection 

References

  1. 1.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  2. 2.
    Mitamura K, Imae T (2009) Functionalization of gold nanorods toward their applications. Plasmonics 4(1):23–30CrossRefGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213CrossRefGoogle Scholar
  4. 4.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  5. 5.
    Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9):5269–5276CrossRefGoogle Scholar
  6. 6.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426CrossRefGoogle Scholar
  7. 7.
    Hu X, Gao X (2011) Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys Chem Chem Phys 13(21):10028–10035CrossRefGoogle Scholar
  8. 8.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327CrossRefGoogle Scholar
  9. 9.
    Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599CrossRefGoogle Scholar
  10. 10.
    Wu X (2011) Au nanorods can be used for long-term cell imaging? Appl Phys Lett 98(21):213704CrossRefGoogle Scholar
  11. 11.
    Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ (2006) Orientational imaging of subwavelength Au particles with higher order laser modes. Nano Lett 6(7):1374–1378CrossRefGoogle Scholar
  12. 12.
    Wackenhut F, Failla AV, Züchner T, Steiner M, Meixner AJ (2012) Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods. Appl Phys Lett 100(26):263102–263104CrossRefGoogle Scholar
  13. 13.
    Ahijado-Guzmán R, Prasad J, Rosman C, Henkel A, Tome L, Schneider D, Rivas G, Sönnichsen C (2014) Plasmonic nanosensors for simultaneous quantification of multiple protein–protein binding affinities. Nano Lett 14(10):5528–5532CrossRefGoogle Scholar
  14. 14.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  15. 15.
    Wackenhut F, Failla AV, Meixner AJ (2013) Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C 117(34):17870–17877CrossRefGoogle Scholar
  16. 16.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefGoogle Scholar
  17. 17.
    Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  18. 18.
    Züchner T, Failla AV, Hartschuh A, Meixner AJ (2008) A novel approach to detect and characterize the scattering patterns of single Au nanoparticles using confocal microscopy. J Microsc 229(2):337–343CrossRefGoogle Scholar
  19. 19.
    Züchner T, Failla AV, Meixner AJ (2011) Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects. Angew Chem Int Ed 50(23):5274–5293CrossRefGoogle Scholar
  20. 20.
    Youngworth K, Brown T (2000) Focusing of high numerical aperture cylindrical-vector beams. Opt Express 7(2):77–87CrossRefGoogle Scholar
  21. 21.
    Wackenhut F, Failla AV, Meixner AJ (2013) Sensing dielectric media on the nanoscale with freely oriented gold nanorods. Phys Chem Chem Phys 15(15):5407–5414CrossRefGoogle Scholar
  22. 22.
    Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. WileyGoogle Scholar
  23. 23.
    Chen H, Ming T, Zhang S, Jin Z, Yang B, Wang J (2011) Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. ACS Nano 5(6):4865–4877CrossRefGoogle Scholar
  24. 24.
    Failla AV, Jäger S, Züchner T, Steiner M, Meixner AJ (2007) Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy. Opt Express 15(14):8532–8542CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryEberhard Karls University TuebingenTübingenGermany
  2. 2.University Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations