Analytical and Bioanalytical Chemistry

, Volume 407, Issue 21, pp 6345–6356 | Cite as

Quantification and profiling of lipophilic marine toxins in microalgae by UHPLC coupled to high-resolution orbitrap mass spectrometry

  • Gabriel Orellana
  • Lieven Van Meulebroek
  • Sarah Van Vooren
  • Maarten De Rijcke
  • Michiel Vandegehuchte
  • Colin R. Janssen
  • Lynn VanhaeckeEmail author
Research Paper
Part of the following topical collections:
  1. High-Resolution Mass Spectrometry in Food and Environmental Analysis


During the last decade, a significant increase in the occurrence of harmful algal blooms (HABs), linked to repetitive cases of shellfish contamination has become a public health concern and therefore, accurate methods to detect marine toxins in different matrices are required. In this study, we developed a method for profiling lipophilic marine microalgal toxins based on ultra-high-performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry (UHPLC-HR-Orbitrap MS). Extraction of selected toxins (okadaic acid (OA), dinophysistoxin-1 (DTX-1), pectenotoxin-2 (PTX-2), azaspiracid-1 (AZA-1), yessotoxin (YTX) and 13-desmethyl spirolide C (SPX-1)) was optimized using a Plackett-Burman design. Three key algal species, i.e., Prorocentrum lima, Protoceratium reticulatum and Alexandrium ostenfeldii were used to test the extraction efficiency of OA, YTXs and SPXs, respectively. Prorocentrum micans, fortified with certified reference solutions, was used for recovery studies. The quantitative and confirmatory performance of the method was evaluated according to CD 2002/657/EC. Limits of detection and quantification ranged between 0.006 and 0.050 ng mL−1 and 0.018 to 0.227 ng mL−1, respectively. The intra-laboratory reproducibility ranged from 6.8 to 11.7 %, repeatability from 6.41 to 11.5 % and mean corrected recoveries from 81.9 to 119.6 %. In addition, algae cultures were retrospectively screened for analogues and metabolites through a homemade database. Using the ToxID software programme, 18 toxin derivates were detected in the extract of three toxin producing microalgae species. In conclusion, the generic extraction and full-scan HRMS approach offers an excellent quantitative performance and simultaneously allows to profile analogues and metabolites of marine toxins in microalgae.

Graphical Abstract

Optimization of extraction, detection and quantification of lipophilic marine toxins in microalgae by UHPLC-HR Orbitrap MS


Ultra-high-performance liquid chromatography high-resolution Orbitrap mass spectrometry Plackett-Burman Validation Harmful algae Yessotoxins Spirolide 



The authors wish to thank Mieke Naessens, Ine Opsteyn, Dirk Stockx, Nancy De Saeyer, Marc Vanderborght, Julie Kiebooms and Nathalie De Clercq for their technical contribution to this manuscript.

Supplementary material

216_2015_8637_MOESM1_ESM.pdf (48 kb)
ESM 1 (PDF 47.7 kb)


  1. 1.
    Hinder S, Brooks G, Hays C, Davies A, Edwards M, Walne A, Gravenor M (2011) Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environ Health 10:54–66CrossRefGoogle Scholar
  2. 2.
    Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235CrossRefGoogle Scholar
  3. 3.
    James KJ, Carey B, O'Halloran J, Van Pelt F, Skrabakova Z (2010) Shellfish toxicity: human health implications of marine algal toxins. Epidemiol Infect 138:927–940CrossRefGoogle Scholar
  4. 4.
    Tirado MC, Clarke R, Jaykus LA, Mcquatters-Gollop A, Frank JM (2010) Climate change and food safety: a review. Food Res Int 43:1745–1765CrossRefGoogle Scholar
  5. 5.
    Park TG, Lim WA, Park YT, Lee CK, Jeong HJ (2013) Economic impact, management and mitigation of red tides in Korea. Harmful algae 30S:S131–S143CrossRefGoogle Scholar
  6. 6.
    Fux E, Smith JL, Tong MM, Guzman L, Anderson DM (2011) Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America. Toxicon 57:275–287CrossRefGoogle Scholar
  7. 7.
    Nielsen LT, Krock B, Hansen PJ (2012) Effects of light and food availability on toxin production, growth and photosynthesis in Dinophysis acuminata. Mar Ecol Prog Ser 471:37–50CrossRefGoogle Scholar
  8. 8.
    Nielsen LT, Krock B, Hansen PJ (2013) Production and excretion of okadaic acid, pectenotoxin-2 and a novel dinophysistoxin from the DSP-causing marine dinoflagellate Dinophysis acuta—effects of light, food availability and growth phase. Harmful Algae 23:34–45CrossRefGoogle Scholar
  9. 9.
    Caillaud A, de la Iglesia P, Campás M, Elandaloussi L, Fernández M, Mohammad-Noor N, Andree K, Diogéne J (2010) Evidence of okadaic acid production in a cultures strain of the marine dinoflagellate Prorocentrum rhathymum from Malaysia. Toxicon 55:633–637CrossRefGoogle Scholar
  10. 10.
    López Rosales L, Gallardo Rodríguez JJ, Sánchez Mirón A, Cerón García MC, Belarbi EH, García Camacho F, Molina Grima E (2014) Simultaneous effects of temperature and irradiance on growth and okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum. Toxicon 6:229–253Google Scholar
  11. 11.
    Gallardo Rodríguez JJ, Sánchez Mirón A, Garcia Camacho F, Cerón García MC, Belarbi EH, Molina Grima E (2010) Culture of dinoflagellate in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666CrossRefGoogle Scholar
  12. 12.
    Röder K, Hantzsche FM, Gebühr C, Miene C, Helbig T, Krock B, Hoppenrath M, Luckas B, Gerdts G (2012) Effects of salinity, temperature and nutrients on rowth, cellular characteristics and yessottoxin production of Protoceratium reticulatum. Harmful Algae 15:59–70CrossRefGoogle Scholar
  13. 13.
    Tillmann U, Elbrachter M, John U, Krock B, Cembella A (2010) Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia 49:303–303CrossRefGoogle Scholar
  14. 14.
    Salas R, Tillmann U, John U, Kilcoyne J, Burson A, Cantwell C, Hess P, Jauffrais T, Silke J (2011) The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels. Harmful Algae 10:774–783CrossRefGoogle Scholar
  15. 15.
    Gerssen A, Mulder PPJ, de Boer J (2011) Screening of lipophilic marine toxins in shellfish and algae: development of a library using liquid chromatography couple to orbitrap mass spectrometry. Anal Chim Acta 685:176–185CrossRefGoogle Scholar
  16. 16.
    Rundberget T, Bunaes Aasen JA, Selwood AI, Miles CO (2011) Pinnatoxins and spirolides in Norwegian blue mussels and seawater. Toxicon 58:700–711CrossRefGoogle Scholar
  17. 17.
    Lee KJ, Mok JS, Song KC, Yu H, Lee DS, Jung JH, Kim JH (2012) First detection and seasonal variation of lipophilic toxins okadaic acid, dinophysistoxin-1, and yessotoxin in Korean gastropods. J Food Prot 75:2000–2006CrossRefGoogle Scholar
  18. 18.
    Lopes VM, Lopes AR, Costa P, Rosa R (2013) Cephalopods as vectors of harmful algal blooms toxins in marine food webs. Mar Drugs 11:3381–3409CrossRefGoogle Scholar
  19. 19.
    Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B (2013) Okadaic acid: more than a diarrheic toxin. Mar Drugs 11:4328–4349CrossRefGoogle Scholar
  20. 20.
    Van Dolah F (2000) Marine algal toxins: Origins, health effects, and their increased occurrence. Environ Health Perspect 108:133–141CrossRefGoogle Scholar
  21. 21.
    Anon (2004) Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Offic. J. European Union, L139. Section VII, Chapter V. 60–61Google Scholar
  22. 22.
    Anon (2005) Regulation (EC) No 2074/2005 of the European Parliament and of the Council of 5 December 2005 laying down implementing measures of certain products under Regulation (EC) No 835/2004 of the European Parliament and of the Council and for the organisation of official controls under Regulation (EC) No 854/2004 of the European Parliament and of the Council and Regulation (EC) No 882/200 of the European Parliament and of the Council, derogating from Regulation (EC) No 852/2004 of the European Parliament and of the Council and amending Regulations (EC) No 853/2004 and (EC) No 854/2004. Official Journal of the European Union L338. Annex III, Chapter III. pp 40–41Google Scholar
  23. 23.
    Domènech A, Cortés-Francisco N, Palacios O, Franco JM, Riobó P, Llerena JJ, Vichi S, Caixach J (2014) Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry. J Chromatogr A 1328:16–25CrossRefGoogle Scholar
  24. 24.
    García-Altares M, Casanueva A, Bane V, Diogéne J, Furey A, de la Igleasia P (2014) Confirmation of pinnatoxins and spirolides in shellfish and passive samplers from Catalonia (Spain) by liquid chromatography coupled with triple quadrupole and high-resolution hybrid tamdem mass spectrometry. Mar Drugs 12:3706–3732CrossRefGoogle Scholar
  25. 25.
    Orellana G, Vande bussche J, Van Meulebroek L, Vandegehuchte M, Janssen C, Vanhaecke L (2014) Validation of a confirmatory method for lipophilic marine toxins in shellfish using UHPLC-HR-Orbitrap MS. Anal Bional Chem 1618Google Scholar
  26. 26.
    Van Meulebroeck L, Vanden Bussche J, Steppe K, Vanhaecke L (2012) Ultra-high performance liquid chromatography couple to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. J Chromatogr A 1260:67–80CrossRefGoogle Scholar
  27. 27.
    De la Iglesia P, Fernandez-Tejedor M (2013) An analytical perspective on detection, screening, and confirmation in phycology, with particular reference to toxins and toxin-producing species. J Phycol 49:1056–1060CrossRefGoogle Scholar
  28. 28.
    Jauffrais T, Herrenknecht C, Séchet V, Sibat M, Tillmann U, Krock B, Kilcoyne J, Milles CO, McCarron P, Amzil Z, Milles CO, Hess P (2012) Quantitative analysis of azaspiracids in Azadinium spinosum cultures. Anal Bional Chem 403:833–846CrossRefGoogle Scholar
  29. 29.
    Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236CrossRefGoogle Scholar
  30. 30.
    Plackett RL, Burman JP (1964) The design of optimum multifactorial experiments. Biometrika 33:305CrossRefGoogle Scholar
  31. 31.
    Beres DL, Hawkins DM (2001) Plackett-Bruman technique for sensitivity analysis of many-parametered models. Ecol Model 141:171CrossRefGoogle Scholar
  32. 32.
    Bezerra ML, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefGoogle Scholar
  33. 33.
    Hackett JD, Mengmeng T, Kulis DM, Fux E, Hess P, Bire R, Anderson M (2009) DSP toxin production de novo in cultures of Dinophysis acuminata (Dinophyceae) from North America. Harmful Algae 8:873–879CrossRefGoogle Scholar
  34. 34.
    Paz B, Riobó P, Franco JM (2011) Preliminary study for rapid determination of phycotoxins in microalgae whole cells using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:3627–3639CrossRefGoogle Scholar
  35. 35.
    Anastácio A, Carvalho IS (2013) Phenolics extraction from sweet potato peels, key factors screening through a Plackett-Burman design. Ind Crop Prod 43:99–105CrossRefGoogle Scholar
  36. 36.
    Commissions Decision 2002/657/EC (2002) Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L221:8–36Google Scholar
  37. 37.
    Antignac JP, Le Bizec B, Monteau F, Andre F (2003) Validation of analytical methods based on mass spectrometric detection according to the “2002/657/EC” European decision: guideline and application. Anal Chim Acta 483:325–334CrossRefGoogle Scholar
  38. 38.
    Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106CrossRefGoogle Scholar
  39. 39.
    Diaz P, Reguera B, Ruiz-Villarreal M, Pazos Y, Velo-Suárez L, Berger H, Sourisseau M (2013) Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Mar Drugs 11:2964–2981CrossRefGoogle Scholar
  40. 40.
    Aasen J, Sambal IA, Miles CO, Dahl E, Briggs LR, Aune T (2005) Yessotoxins in Norwegian blue mussels (Mytilus edulis): uptake from Proroceratium reticulatum, metabolism and depuration. Toxicon 45:265–272CrossRefGoogle Scholar
  41. 41.
    Nascimento SM, Purdie DA, Morris S (2005) Morphology, toxin composition and pigment content of Prorocentrum lima strains isolated from a coastal lagoon in southern UK. Toxicon 45:633–649CrossRefGoogle Scholar
  42. 42.
    Fux E, Gonzalez-GIL S, Lunven M, Gentien P, Hess P (2010) Production of diarrhetic shellfish poisoning toxins and pectenotoxins at depths within and below the euphotic zone. Toxicon 56:1487–1496CrossRefGoogle Scholar
  43. 43.
    Ciminiello P, Dell’Avellano C, Forino M, Tartaglione L (2014) Marine toxins in Italy: the more you look, the more you find. Eur J Org Chem 1357–1369Google Scholar
  44. 44.
    Medhioub W, Sechet V, Truquet P, Bardouil M, Amzil Z, Lassus P, Soudant P (2011) Alexandrium ostenfeldii growth and spirolide production in batch culture and photobioreactor. Harmful algae 10:794–803CrossRefGoogle Scholar
  45. 45.
    Karnes HT, March C (1991) Calibration and validation of linearity in chromatographic biopharmaceutical analysis. J Pharm Biomed 9:911–918CrossRefGoogle Scholar
  46. 46.
    Vale P, Veloso V, Amorim A (2009) Toxin composition of a Prorocentrum lima strain isolated from the Portuguese coast. Toxicon 54:145–152CrossRefGoogle Scholar
  47. 47.
    Li J, Li M, Pan J, Liang J, Zhou Y, Wu J (2012) Identification of the okadaic acid-based toxin profile of a marine dinoflagellate strain Prorocentrum lima by LC-MS/MS and NMR spectroscopic data. J Sep Sci 35:782–789CrossRefGoogle Scholar
  48. 48.
    Paz B, Blanco J, Franco JM (2013) Yessotoxins production during the culture of Protoceratium reticulatum strains isolated from Galician Rias Baixas (NW Spaian). Harmful Algae 21–22:13–19CrossRefGoogle Scholar
  49. 49.
    Ciminiello P, Dell’ Aversano C, Fattorusso E, Magno S, Tartaglione L, Cangini M, Pompei M, Guerrini F, Boni L, Pistocchi R (2006) Toxin profile of Alexandrium ostenfeldii (Dinophyceae) from the North Adriatic Sea revealed by liquid chromatography-mass spectrometry. Toxicon 47:597–604CrossRefGoogle Scholar
  50. 50.
    Cruz PG, Daranas AH, Fernández JJ, Souto ML, Norte M (2006) DTX5c, a new OA sulphate ester derivative from cultures of Prorocentrum belizeanum. Toxicon 47:920–924CrossRefGoogle Scholar
  51. 51.
    Paz B, Daranas AH, Cruz PG, Franco JM, Norte M, Fernández JJ (2008) Identification of 19-epi-okadaic acid, a new diarrhetic shellfish poisoning toxin, by liquid chromatography with mass spectrometry detection. Mar Drugs 6:489–495Google Scholar
  52. 52.
    Britton R, Roberge M, Brown C, Van Soest R, Andersen RJ (2003) New okadaic acid analogues from the marine sponge Merriamum oxeato and their effect on mitosis. J Nat Prod 66:838–843CrossRefGoogle Scholar
  53. 53.
    Paz B, Daranas AH, Cruz PG, Franco JM, Pizarro G, Souto ML, Norte M, Fernández JJ (2007) Characterization of okadaic acid related toxins by liquid chromatography coupled with mass spectrometry. Toxicon 50:225–235CrossRefGoogle Scholar
  54. 54.
    Miles CO, Samdal IA, Aasen JAG, Jensen DJ, Quilliam MA, Petersen D, Briggs LM, Wilkins AL, Rise F, Cooney JM, MacKenzie AL (2005) Evidence for numerous analogs of yessotoxins in Protoceratium reticulatum. Harmful Algae 4:1075–1091CrossRefGoogle Scholar
  55. 55.
    Hu T, Burton IW, Cembella AD, Curtis JM, Quilliam MA, Walter JA, Wright JLC (2001) Characterization of spirolide a, b, and 13-desmethyl C, new marine toxins isolated from toxic plankton and contaminated shellfish. J Nat Prod 64:308–312CrossRefGoogle Scholar
  56. 56.
    Sleno L, Windust AJ, Volmer DA (2004) Structural study of spirolide marine toxins by mass spectrometry. Anal Bional Chem 378:969–976CrossRefGoogle Scholar
  57. 57.
    Hu T, Curtis JM, Walter JA, Wright JLC (1996) Characterization of biologically inactive spirolide E and F: identification of the spirolide pharmacophore. Tetrahedron Lett 37:7671–7674CrossRefGoogle Scholar
  58. 58.
    MacKinnon S, Walter J, Quilliam M, Cembella A, LeBlanc P, Burton I, Hardstaff W, Lewis N (2006) Spirolides isolated from Danish strains of the toxigenic dinoflagellate Alexandrium ostenfeldii. J Nat Prod 69:8–12CrossRefGoogle Scholar
  59. 59.
    Roach JS, LeBlanc P, Lewis NI, Munday R, Quilliam MA, MacKinnon SL (2009) Characterization of a dispiroketal spirolide subclass from Alexandrium ostenfeldii. J Nat Prod 72:1237–1240CrossRefGoogle Scholar
  60. 60.
    Ciminiello P, Dell’ Aversano C, Fattorusso E, Forino M, Grauso L, Tartaglione L, Guerrini F, Pistocchi R (2007) Spirolide toxin profile of adriatic Alexandrium ostenfeldii cultures and structure elucidation of 27-hydroxy-13,19-didesmethyl spirolide C. J Nat Prod 70:1878–1883CrossRefGoogle Scholar
  61. 61.
    Ciminiello P, Dell’ Aversano C, Iacovo ED, Fattorusso E, Forino M, Grauso L, Tartaglione L, Guerrini F, Pezzolesi L, Pistocchi R (2010) Characterization of 27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin profile. Toxicon 56:1327–1333CrossRefGoogle Scholar
  62. 62.
    Aasen J, Hardstaff W, Aune T, Quilliam MA (2006) Discovery of fatty acid ester metabolites of spirolide toxins in mussels from Norway using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1531–1537CrossRefGoogle Scholar
  63. 63.
    Commission Decision 96/23/EC (1996) On measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/385/EEC and 86/469/EEC and decision 89/187/EEC and 91/664/EEC. Off J Eur Commun L125:10Google Scholar
  64. 64.
    Vanhaecke L, Van Meulebroek L, De Clercq N, Vanden Bussche J (2013) High resolution orbitrap mass spectrometry in comparison with tandem mass spectrometry for confirmation of anabolic steroids in meat. Anal Chim Acta 767:118–127CrossRefGoogle Scholar
  65. 65.
    Lehner SM, Neumann NKN, Sulyok M, Lemmens M, Krska R, Schuhmacher R (2011) Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Addit Contam 28:1457–1468CrossRefGoogle Scholar
  66. 66.
    Stoev G, Xuan Y, Peycheva M, Scigelova M (2012) Quantitative assessment of the contribution of high resolution mass spectrometry analysis to the reliability of compound confirmation. Talanta 98:19–27CrossRefGoogle Scholar
  67. 67.
    Dahlmann J, Budakowski WR, Luckas B (2003) Liquid chromatography–electrospray ionisation-mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins. J Chromatogr A 994:45–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gabriel Orellana
    • 1
    • 2
  • Lieven Van Meulebroek
    • 1
  • Sarah Van Vooren
    • 1
  • Maarten De Rijcke
    • 2
  • Michiel Vandegehuchte
    • 2
  • Colin R. Janssen
    • 2
  • Lynn Vanhaecke
    • 1
    Email author
  1. 1.Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical AnalysisGhent UniversityMerelbekeBelgium
  2. 2.Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGhentBelgium

Personalised recommendations