Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 5133–5142 | Cite as

Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry

  • Marie Méjean
  • Alain Brunelle
  • David TouboulEmail author
Research Paper
Part of the following topical collections:
  1. Lipidomics

Abstract

For the most effective analytical strategies, development and validation include optimization of such analytical variables as resolution, detectability, sensitivity, simplicity, cost effectiveness, flexibility, and speed. However, other aspects concerning operator safety and environmental impact are not considered at the same level. The result has been many unintended negative effects of analytical methods developed to investigate different kinds of sample, especially hydrophobic compounds that generate a large amount of chemical waste and have a strong negative environmental impact. In this context, quantification of tocopherols and tocotrienols, i.e. the vitamin E family, is usually achieved by normal-phase liquid chromatography using large volumes of toxic organic solvents, or reversed-phase liquid chromatography using a high percentage of methanol for elution. We propose here a “greener” analytical strategy, including the hyphenation of supercritical-fluid chromatography, using CO2 and ethanol as mobile phase, NH2 as stationary phase, and mass spectrometry for the detection and quantification of vitamin E congeners in soybean oil. An atmospheric-pressure photoionization (APPI) source seemed significantly more sensitive and robust than electrospray or atmospheric-pressure chemical ionization (APCI). This method led to shortened analysis time (less than 5 min) and was revealed to be as sensitive as more traditional approaches, with limits of detection and quantification in the tens of μg L−1.

Graphical Abstract

SFC-MS analysis of vitamin E compounds

Keywords

Tocopherol Tocotrienol Vitamin E Supercritical-fluid chromatography Mass spectrometry Soybean oil 

Notes

Acknowledgments

M.M. is indebted to the Region Île-de-France for a Ph.D. research fellowship. Agilent Technologies is warmly thanked for the loan of the SFC–UV system.

Supplementary material

216_2015_8604_MOESM1_ESM.pdf (327 kb)
ESM 1 (PDF 326 kb)

References

  1. 1.
    Eitenmiller RR, Lee J (2004) Vitamin E, food chemistry, composition, and analysis. Marcel Dekker Inc, New YorkCrossRefGoogle Scholar
  2. 2.
    Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57:43–56CrossRefGoogle Scholar
  3. 3.
    Dowd P, Zheng ZB (1995) On the mechanism of the anticlotting action of vitamin E quinone. Proc Natl Acad Sci U S A 92:8171–8175CrossRefGoogle Scholar
  4. 4.
    Rimbach G, Moehring J, Huebbe P, Lodge JK (2010) Gene-regulatory activity of α-tocopherol. Molecules 15:1746–1761CrossRefGoogle Scholar
  5. 5.
    Ricciarelli R, Aggellati F, Pronzato MA, Domenicotti C (2007) Vitamin E and neurodegenerative disease. Mol Asp Med 28:591–606CrossRefGoogle Scholar
  6. 6.
    Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN (1997) γ-Tocopherol traps mutagenic electrophiles such as NOx and complements α-tocopherol: physiological implications. Proc Natl Acad Sci U S A 94:3217–3222CrossRefGoogle Scholar
  7. 7.
    Gunstone FD, Harwood JL, Padley FB (1994) The lipid handbook (second edition). Chapman & Hall, LondonGoogle Scholar
  8. 8.
    Bieri JG, Evarts RP (1974) γ-Tocopherol: metabolism, biological activity and significance in human vitamin E nutrition. Am J Clin Nutr 27:980–986Google Scholar
  9. 9.
    Lodge JK (2005) Vitamin E bioavailability in humans. J Plant Physiol 162:790–796CrossRefGoogle Scholar
  10. 10.
    Lauridsen C, Leonard SW, Griffin DA, Liebler DC, McClure TD, Traber MG (2001) Quantitative analysis by liquid chromatography-tandem mass spectrometry of deuterium-labeled and unlabeled vitamin E in biological samples. Anal Biochem 289:89–95CrossRefGoogle Scholar
  11. 11.
    Mottier P, Gremaud E, Guy PA, Turesky RJ (2002) Comparison of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry methods to quantify alpha-tocopherol and alpha-tocopherolquinone levels in human plasma. Anal Biochem 301:128–135CrossRefGoogle Scholar
  12. 12.
    Kalman A, Mujahid C, Mottier P, Heudi O (2003) Determination of alpha-tocopherol in infant foods by liquid chromatography combined with atmospheric pressure chemical ionisation mass spectrometry. Rapid Commun Mass Spectrom 17:723–727CrossRefGoogle Scholar
  13. 13.
    Paz San Andrés M, Otero J, Vera S (2011) High performance liquid chromatography method for the simultaneous determination of α-, γ- and δ-tocopherol in vegetable oils in presence of hexadecyltrimethylammonium bromide/n-propanol in mobile phase. Food Chem 126:1470–1474CrossRefGoogle Scholar
  14. 14.
    Abidi SL (2000) Chromatographic analysis of tocol-derived lipid antioxidants. J Chromatogr A 881:197–216CrossRefGoogle Scholar
  15. 15.
    Kamal-Eldi A, Görgen S, Pettersson J, Lampi AM (2000) Normal-phase high-performance liquid chromatography of tocopherols and tocotrienols. Comparison of different chromatographic columns. J Chromatogr A 881:217–227CrossRefGoogle Scholar
  16. 16.
    Cunha SC, Amaral JS, Fernandes JO, Oliveira MB (2006) Quantification of tocopherols and tocotrienols in portuguese olive oils using HPLC with three different detection systems. J Agric Food Chem 54:3351–3356CrossRefGoogle Scholar
  17. 17.
    Grebenstein N, Frank J (2012) Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J Chromatogr A 1243:39–46CrossRefGoogle Scholar
  18. 18.
    Wong YF, Makahleh A, Saad B, Ibrahim MN, Rahim AA, Brosse N (2014) UPLC method for the determination of vitamin E homologues and derivatives in vegetable oils, margarines and supplement capsules using pentafluorophenyl column. Talanta 130:299–306CrossRefGoogle Scholar
  19. 19.
    Hao Z, Parker B, Knapp M, Yu L (2005) Simultaneous quantification of alpha-tocopherol and four major carotenoids in botanical materials by normal phase liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Chromatogr A 1094:83–90CrossRefGoogle Scholar
  20. 20.
    Viñas P, Bravo-Bravo M, López-García, Pastor-Belda M, Hernández-Córdoba (2014) Pressurized liquid extraction and dispersive liquid-liquid microextraction for determination of tocopherols and tocotrienols in plant foods by liquid chromatography with fluorescence and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta 119:98–104CrossRefGoogle Scholar
  21. 21.
    Lanina SA, Toledo P, Sampels S, Kamal-Eldin A, Jastrebova JA (2007) Comparison of reversed-phase liquid chromatography-mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J Chromatogr A 1157:159–170CrossRefGoogle Scholar
  22. 22.
    Bustamante-Rangel M, Delgado-Zamarreño MM, Sánchez-Pérez A, Carabias-Martínez R (2007) Determination of tocopherols and tocotrienols in cereals by pressurized liquid extraction-liquid chromatography-mass spectrometry. Anal Chim Acta 587(2):216–221CrossRefGoogle Scholar
  23. 23.
    Croley TR, White KD, Wong J, Callahan JH, Musser SM, Antler M, Lashin V, McGibbon GA (2013) Combining targeted and nontargeted data analysis for liquid chromatography/high-resolution mass spectrometric analyses. J Sep Sci 36:97–979CrossRefGoogle Scholar
  24. 24.
    Bernal JL, Martín MT, Toribio L (2013) Supercritical fluid chromatography in food analysis. J Chromatogr A 1313:24–36CrossRefGoogle Scholar
  25. 25.
    Pinkston JD (2005) Advantages and drawbacks of popular supercritical fluid chromatography/mass interfacing approaches–a user's perspective. Eur J Mass Spectrom 11(2):189–197CrossRefGoogle Scholar
  26. 26.
    Snyder JM, Taylor SL, King JW (1993) Analysis of tocopherols by capillary supercritical fluid chromatography and mass spectrometry. J Am Oil Chem Soc 70:349–354CrossRefGoogle Scholar
  27. 27.
    Yarita T, Nomura A, Abe K, Takeshita Y (1994) Supercritical fluid chromatographic determination of tocopherols on an ODS-silica gel column. J Chromatogr A 679:329–334CrossRefGoogle Scholar
  28. 28.
    Buskov S, Jørgensen SS, Sørensen H (1999) Determination of tocopherols by packed column supercritical fluid chromatography (SFC). Pol J Food Nutr Sci 8:135–147Google Scholar
  29. 29.
    Han NM, May CY, Ngan MA, Hock CC, Hashim MA (2004) Isolation of palm tocols using supercritical fluid chromatography. J Chromatogr Sci 42:536–539CrossRefGoogle Scholar
  30. 30.
    Katsanidis E, Addis PB (1999) Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 27:1137–1140CrossRefGoogle Scholar
  31. 31.
    Méjean M, Vollmer M, Brunelle A, Touboul D (2013) Quantification of retinoid compounds by supercritical fluid chromatography coupled to ultraviolet diode array detection. Chromatographia 76:1097–1105CrossRefGoogle Scholar
  32. 32.
    Grand-Guillaume Perrenoud A, Veuthey JL, Guillarme D (2014) Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: from hyphenation interface optimization to high-sensitivity analysis of pharmaceutical compounds. J Chromatogr A 1339:174–184CrossRefGoogle Scholar
  33. 33.
    Lou X, Janssen H-G, Cramers CA (1997) Temperature and pressure effects on solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography. J Chromatogr A 785:57–64CrossRefGoogle Scholar
  34. 34.
    Cai Y, Kingery D, McConnell O, Bach AC II (2005) Advantages of atmospheric pressure photoionization mass spectrometry in support of drug discovery. Rapid Commun Mass Spectrom 19:1717–1724CrossRefGoogle Scholar
  35. 35.
    Gaudin M, Imbert L, Libong D, Chaminade P, Brunelle A, Touboul D, Laprévote O (2012) Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. J Am Soc Mass Spectrom 23:869–879CrossRefGoogle Scholar
  36. 36.
    Imbert L, Gaudin M, Libong D, Touboul D, Abreu S, Loiseau PM, Laprévote O, Chaminade P (2012) Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani. J Chromatogr A 1242:75–83CrossRefGoogle Scholar
  37. 37.
    Bolaños B, Greig M, Ventura M, Farrell W, Aurigemma CM, Li H, Quenzer TL, Tivel K, Bylund JMR, Tran P, Pham C, Phillipson D (2004) SFC/MS in drug discovery at Pfizer, La Jolla. Int J Mass Spectrom 238:85–97CrossRefGoogle Scholar
  38. 38.
    Hanold KA, Fischer SM, Cormia PH, Miller CE, Syage JA (2004) Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal Chem 76:2842–2851CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Chen WJ, Song JR, Gui P, Wen ZY (2006) Butein, a more effective antioxidant than α-tocopherol. J Mol Struct THEOCHEM 763:161–164CrossRefGoogle Scholar
  41. 41.
    Perri E, Mazzotti F, Raffaelli A, Sindona G (2000) High-throughput screening of tocopherols in natural extracts. J Mass Spectrom 35:1360–1361CrossRefGoogle Scholar
  42. 42.
    Nováková L, Perrenoud AG, Francois I, West C, Lesellier E, Guillarme D (2014) Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial. Anal Chim Acta 824:18–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Chimie des Substances Naturelles, UPR2301, CNRSGif-sur-YvetteFrance

Personalised recommendations