Skip to main content
Log in

Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The label-free detection of bovine milk in goat milk through a miniaturized optical biosensor is presented. The biosensor consists of ten planar silicon nitride waveguide Broad-Band Mach–Zehnder interferometers (BB-MZIs) monolithically integrated and self-aligned with their respective silicon LEDs on the same Si chip. The BB-MZIs were transformed to biosensing transducers by functionalizing their sensing arm with bovine k-casein. Measurements were performed by continuously recording the transmission spectra of each interferometer through an external spectrometer. The amount of bovine milk in goat milk was determined through a competitive immunoassay by passing over the sensor mixtures of anti-k-casein antibodies with the calibrators or the samples. The output spectra of each BB-MZI recorded during the reaction were subjected to Discrete Fourier Transform in order to convert the observed spectral shifts to phase shifts in the wavenumber domain. The method had a detection limit of 0.04 % (v/v) bovine milk in goat milk, dynamic range 0.1–1.0 % (v/v), recoveries 93–110 %, and intra- and inter-assay coefficients of variation less than 12 and 15 %, respectively. The proposed biosensor compared well in terms of analytical performance with a competitive ELISA developed using the same monoclonal antibodies. Nevertheless, the duration of the biosensor assay was 10 min whereas the ELISA required 2 h. Thus, the fast and sensitive determinations along with the small size of the sensor make it ideal for incorporation into portable devices for assessment of goat or ewe’s milk adulteration with bovine milk at the point-of-need.

Image of the chip with the fluidic module on top (left) and graph indicating real-time sensor responces for different bovine milk additions to goat milk (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mayer HK (2005) Int Dairy J 15:595–604

    Article  CAS  Google Scholar 

  2. Bellioni-Businco B, Paganelli R, Lucenti P, Giampietro PG, Perborn H, Businco L (1999) J Allergy Clin Immunol 103:1191–1194

    Article  CAS  Google Scholar 

  3. Claeys WL, Cardoen S, Daube G, Block JD, Dewettinck K, Dierick K, Zutter LD, Huyghebaert A, Imberechts H, Thiange P, Vandenplas Y, Herman L (2013) Food Control 31:251–262

    Article  CAS  Google Scholar 

  4. Creamer LK, Plowman JE, Liddell MJ, Mith MH, Hill JP (1998) J Dairy Sci 81:3004–3012

    Article  CAS  Google Scholar 

  5. European Parliament and Council (2000) Off J Eur Communities L109:29–42

    Google Scholar 

  6. European Parliament and Council (2003) Off J Eur Communities L308:15–18

    Google Scholar 

  7. Food Allergen Labeling and Consumer Protection Act of 2004, Public Law 108-282, August 2, 2004

  8. Mayer HK, Heidler D, Rockenbauer C (1997) Int Dairy J 7:619–628

    Article  CAS  Google Scholar 

  9. Borkova M, Snaselova J (2005) Czech J Food Sci 23:41–50

    CAS  Google Scholar 

  10. Cartoni G, Coccioli F, Jasionowska R, Masci M (1999) J Chromatogr A 846:135–141

    Article  CAS  Google Scholar 

  11. Molina E, Martín-Álvarez PJ, Ramos M (1999) Int Dairy J 9:99–105

    Article  CAS  Google Scholar 

  12. Veloso ACA, Teixeira N, Ferreira IMPLVO (2002) J Chromatogr A 967:209–218

    Article  CAS  Google Scholar 

  13. Stanciuc N, Rapeanu G (2010) Food Agric Immunol 21:157–164

    Article  CAS  Google Scholar 

  14. Nicolaou N, Xu Y, Goodacre R (2011) Anal Bioanal Chem 399:3491–3502

    Article  CAS  Google Scholar 

  15. Czerwenka C, Muller L, Lindner W (2010) Food Chem 122:901–908

    Article  CAS  Google Scholar 

  16. Chen R-K, Chang L-W, Chung Y-Y, Lee M-H, Ling Y-C (2004) Rapid Commun Mass Spectrom 18:1167–1171

    Article  CAS  Google Scholar 

  17. Bania J, Ugorski M, Polanowski A, Adamczyk E (2001) J Dairy Res 68:333–336

    Article  CAS  Google Scholar 

  18. Rodrigues NPA, Givisiez PEN, Queiroga RCRE, Azevedo PS, Gebreyes WA, Oliveira CJB (2012) J Dairy Sci 95:2749–2752

    Article  CAS  Google Scholar 

  19. Mafra I, Roxo A, Ferreira IMPLVO, Oliveira MBPP (2007) Int Dairy J 17:1132–1138

    Article  CAS  Google Scholar 

  20. van Hengel AJ (2007) Anal Bioanal Chem 389:111–118

    Article  Google Scholar 

  21. Commission Regulation EC No 273/2008 of 5 March 2008. Off J Eur Commun L88:53-61

  22. Hurley IP, Coleman RC, Ireland HE, Williams JHH (2006) Int Dairy J 16:805–812

    Article  CAS  Google Scholar 

  23. Levieux D, Venien A (1994) J Dairy Res 61:91–99

    Article  CAS  Google Scholar 

  24. Anguita G, Martín R, García T, Morales P, Haza AI, González I, Sanz B, Hernández PE (1995) J Dairy Res 62:655–659

    Article  CAS  Google Scholar 

  25. Bremer MGEG, Kemmers-Voncken AEM, Boers EAM, Frankhuizen R, Haasnoot W (2008) Int Dairy J 18:294–302

    Article  CAS  Google Scholar 

  26. Song H, Xue H, Han Y (2011) Food Control 22:883–887

    Article  Google Scholar 

  27. Lopez-Calleja IM, Gonzalez I, Fajardo V, Hernandez PE, Garcıa T, Martın R (2007) Int Dairy J 17:87–93

    Article  CAS  Google Scholar 

  28. Hurley IP, Coleman RC, Ireland HE, Williams JHH (2004) J Dairy Sci 87:543–549

    Article  CAS  Google Scholar 

  29. Zeleňáková L, Židek R, Čanigová M (2010) J Food Phys 23:22–26

    Google Scholar 

  30. Chávez NA, Jauregui J, Palomares LA, Macías KE, Jiménez M, Salinas E (2012) Dairy Sci Technol 92:121–132

    Article  Google Scholar 

  31. Ren QR, Zhang H, Guo HY, Jiang L, Tian M, Ren FZ (2014) J Dairy Sci 97:6000–6006

    Article  CAS  Google Scholar 

  32. Pilolli R, Monaci L, Visconti A (2013) Trends Anal Chem 47:12–26

    Article  CAS  Google Scholar 

  33. Vikas, Anjum, Pundir CS (2007) Sens Transducer J 76:935–936

    Google Scholar 

  34. Crosson C, Rossi C (2013) Biosens Bioelectron 42:453–459

    Article  CAS  Google Scholar 

  35. Eissa S, Tlili C, L’Hocine L, Zourob M (2012) Biosens Bioelectron 38:308–313

    Article  CAS  Google Scholar 

  36. Cao Q, Zhao H, Yang Y, He Y, Ding N, Wang J, Wu Z, Xiang K, Wang G (2011) Biosens Bioelectron 26:3469–3474

    Article  CAS  Google Scholar 

  37. Muller-Renaud S, Dupont D, Dulieu P (2003) Food Agric Immunol 15:265–277

    Article  CAS  Google Scholar 

  38. Haasnoot W, Marchesini GR, Koopal K (2006) J AOAC Int 89:849–855

    CAS  Google Scholar 

  39. Indyk HE, Filonzi EL (2003) J AOAC Int 86:386–393

    CAS  Google Scholar 

  40. Billakanti JM, Fee CJ, Lane FR, Kash AS, Fredericks R (2010) Int Dairy J 20:96–105

    Article  CAS  Google Scholar 

  41. Misiakos K, Kakabakos SE, Petrou PS, Ruf HH (2004) Anal Chem 76:1366–1373

    Article  CAS  Google Scholar 

  42. Haasnoot W, Smits NGE, Kemmers-Voncken AEM, Bremer MGEG (2004) J Dairy Res 71:322–329

    Article  CAS  Google Scholar 

  43. Washburn AL, Luchansky MS, Bowman AL, Bailey RC (2010) Anal Chem 82:69–72

    Article  CAS  Google Scholar 

  44. Ymeti A, Kanger JS, Grevea J, Besselink GAJ, Lambeck PV, Wijn R, Heideman RG (2005) Biosens Bioelectron 20:1417–1421

    Article  CAS  Google Scholar 

  45. Kozma P, Kehl F, Ehrentreich-Förster E, Stamm C, Bier FF (2014) Biosens Bioelectron 58:287–307

    Article  CAS  Google Scholar 

  46. Blanco FJ, Agirregabiria M, Berganzo J, Mayora K, Elizalde J, Calle A, Dominguez C, Lechuga LM (2006) J Micromech Microeng 16:1006–1016

    Article  CAS  Google Scholar 

  47. Kitsara M, Misiakos K, Raptis I, Makarona E (2010) Opt Express 18:8193–8206

    Article  CAS  Google Scholar 

  48. Misiakos K, Raptis I, Makarona E, Botsialas A, Salapatas A, Oikonomou P, Psarouli A, Petrou PS, Kakabakos SE, Tukkiniemi K, Sopanen M, Jobst G (2014) Opt Express 22:26803–26813

    Article  CAS  Google Scholar 

  49. Misiakos K, Raptis I, Salapatas A, Makarona E, Botsialas A, Hoekman M, Stoffer R, Jobst G (2014) Opt Express 22:8856–8870

    Article  CAS  Google Scholar 

  50. Awsiuk K, Bernasik A, Kitsara M, Budkowski A, Petrou P, Kakabakos S, Prauzner-Bechcicki S, Rysz J, Raptis I (2012) Colloids Surf B: Biointerfaces 90:159–168

    Article  CAS  Google Scholar 

  51. Haasnoot W, Sajic N, Essers KD, Streppel L, Verheijen R (2014) J Adv Dairy Res 2:118–122

    Google Scholar 

Download references

Acknowledgments

This work was supported by the EU-funded Project “FOODSNIFFER” (FP7-ICT-318319) (www.foodsniffer.eu). Authors would like to thank Dr. Michel Lees (Eurofins Scientific Development, France) and Dr. Eric Smith (Stichting TrustFood, The Netherlands) for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Raptis.

Additional information

Published in the topical collection Direct Optical Detection with guest editors Guenter Gauglitz and Jiri Homola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulou, Μ., Botsialas, A., Salapatas, A. et al. Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor. Anal Bioanal Chem 407, 3995–4004 (2015). https://doi.org/10.1007/s00216-015-8596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8596-3

Keywords

Navigation