Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 14, pp 3965–3974 | Cite as

Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves

  • Alberto Sinibaldi
  • Aleksei Anopchenko
  • Riccardo Rizzo
  • Norbert Danz
  • Peter Munzert
  • Paola Rivolo
  • Francesca Frascella
  • Serena Ricciardi
  • Francesco Michelotti
Research Paper
Part of the following topical collections:
  1. Direct Optical Detection

Abstract

In label-free biosensing, a continuous improvement of the limit of detection is necessary to resolve the small change of the surface refractive index produced by interacting biomolecules at a very small concentration. In the present work, optical sensors based on one-dimensional photonic crystals supporting Bloch surface waves are proposed and adopted for label-free optical biosensing. We describe the implementation of an angularly resolved ellipsometric optical sensing scheme based on Bloch surface waves sustained by tantala/silica multilayers. The angular operation is obtained using a focused beam at fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results show that the experimental limit of detection for a particular photonic crystal design is 6.5 × 10−7 refractive index units (RIU)/Hz1/2 and further decrease could be obtained. For the first time, we report on the practical application of this technique to a cancer biomarker protocol that aims at the detection of a specific glycoprotein (angiopoietin 2) involved in angiogenesis and inflammation processes.

Graphical Abstract

Camera image showing the resonance associated to the excitation of a Bloch surface wave in the two different regions of a biochip

Keywords

Optical biosensing Label-free biosensors Photonic crystals Bloch surface waves Ellipsometry Biophotonics 

Notes

Acknowledgments

This research has received funding from the European Union Seventh Framework Program (FP7/2007–2013) under grant agreement no. 318035—Project BILOBA (www.biloba-project.eu). The authors gratefully acknowledge Agostino Occhicone from Sapienza University of Rome (Italy) for his assistance with experimental work, Frank Sonntag and Stefan Schmieder from Fraunhofer IWS (Germany) for their fabrication of the PDMS fluidic cell and Emmanuel Maillart from HORIBA Jobin Yvon (France) and Lucia Napione from the University of Torino (Italy) for their fruitful discussions.

Supplementary material

216_2015_8591_MOESM1_ESM.pdf (10 kb)
ESM 1 (PDF 9 kb)
216_2015_8591_MOESM2_ESM.mpg (23.6 mb)
ESM 2 (MPG 24138 kb)

References

  1. 1.
    Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462:461–464CrossRefGoogle Scholar
  2. 2.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299CrossRefGoogle Scholar
  3. 3.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54:3–15CrossRefGoogle Scholar
  4. 4.
    Wolfbeis OS (2006) Springer series on chemical sensors and biosensors. In: Wolfbeis OS, Homola J (eds) Surface plasmon resonance based sensors. Springer, BerlinGoogle Scholar
  5. 5.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505–16517CrossRefGoogle Scholar
  6. 6.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  7. 7.
    Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRefGoogle Scholar
  8. 8.
    Luchansky MS, Bailey RC (2012) High-Q optical sensors for chemical and biological analysis. Anal Chem 84:793–821CrossRefGoogle Scholar
  9. 9.
    Yeh P, Yariv A, Hong CS (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67(4):423–438CrossRefGoogle Scholar
  10. 10.
    Shinn M, Robertson WM (2005) Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sensors Actuators B 105:360–364CrossRefGoogle Scholar
  11. 11.
    Konopsky VN, Alieva EV (2007) Photonic crystal surface waves for optical biosensors. Anal Chem 79(12):4729–4735CrossRefGoogle Scholar
  12. 12.
    Giorgis F, Descrovi E, Summonte C, Dominici L, Michelotti F (2010) Experimental determination of the sensitivity of Bloch surface wave based sensors. Opt Express 18(8):8087–8093CrossRefGoogle Scholar
  13. 13.
    Guo Y, Ye JY, Divin C, Huang B, Thomas TP, Baker JR, Norris TB (2010) Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem 82:5211–5218CrossRefGoogle Scholar
  14. 14.
    Rivolo P, Michelotti F, Frascella F, Digregorio G, Mandracci P, Dominici L, Giorgis F, Descrovi E (2012) Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves. Sensors Actuators B 161:1046–1052CrossRefGoogle Scholar
  15. 15.
    Raether H (1988) Surface plasmons. Springer, BerlinGoogle Scholar
  16. 16.
    Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37:1175–1177CrossRefGoogle Scholar
  17. 17.
    Ameling R, Langguth L, Hentschel M, Mesch M, Braun V, Giessen PH (2010) Cavity enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116–253121CrossRefGoogle Scholar
  18. 18.
    Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F (2012) Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors Actuators B 174:292–298CrossRefGoogle Scholar
  19. 19.
    Ballarini M, Frascella F, Michelotti F, Digregorio G, Rivolo P, Paeder V, Musi V, Giorgis F, Descrovi E (2011) Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal. Appl Phys Lett 99:043302CrossRefGoogle Scholar
  20. 20.
    Ballarini M, Frascella F, Enrico E, Mandracci P, De Leo N, Michelotti F, Giorgis F, Descrovi E (2012) Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides. Appl Phys Lett 100:063305CrossRefGoogle Scholar
  21. 21.
    Farmer A, Friedli A, Wright SM, Robertson WM (2012) Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sensors Actuators B 173:79–84CrossRefGoogle Scholar
  22. 22.
    Paeder V, Darmo J, Unterrainer K (2013) Ultra-thin terahertz waveguides on periodic dielectric multilayers. IEEE 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)Google Scholar
  23. 23.
    Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C, Michelotti F (2014) Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Opt Lett 39:2947–2950CrossRefGoogle Scholar
  24. 24.
    Sinibaldi A, Rizzo R, Figliozzi G, Descrovi E, Danz N, Munzert P, Anopchenko A, Michelotti F (2013) Full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt Express 21:23331CrossRefGoogle Scholar
  25. 25.
    Homola J, Yee SS (1998) Novel polarization control scheme for spectral surface plasmon resonance sensors. Sensors Actuators B 51:331–339CrossRefGoogle Scholar
  26. 26.
    Munzert P, Schulz U, Kaiser N (2003) Transparent thermoplastic polymers in plasma assisted coating processes. Surf Coat Technol 174–175:1048–1052CrossRefGoogle Scholar
  27. 27.
    Ricciardi S, Castagna R, Severino SM, Ferrante I, Frascella F, Celasco E, Mandracci P, Vallini I, Mantero G, Pirri CF, Rivolo P (2012) Surface functionalization by poly-acrylic acid plasma-polymerized films for microarray DNA diagnostics. Surf Coat Technol 207:389–399CrossRefGoogle Scholar
  28. 28.
    Frascella F, Ricciardi S, Rivolo P, Moi V, Giorgis F, Descrovi E, Michelotti F, Munzert P, Danz N, Napione L, Alvaro M, Bussolino F (2013) A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves. Sensors 13:2011–2022CrossRefGoogle Scholar
  29. 29.
    Michelotti F, Sinibaldi A, Munzert P, Danz N, Descrovi E (2013) Probing losses of dielectric multilayers by means of Bloch surface waves. Opt Lett 38:616–618CrossRefGoogle Scholar
  30. 30.
    Rizzo R, Danz N, Michelotti F, Maillart E, Anopchenko A, Waecther C (2014) Optimization of angularly resolved Bloch surface wave biosensors. Opt Express 22:23202–23214CrossRefGoogle Scholar
  31. 31.
    Voros J (2004) The density and refractive index of absorbing protein layers. Biophys J 87:553–561CrossRefGoogle Scholar
  32. 32.
    Maillart E (2004) Développement d’un biocapteur par imagerie SPR. PhD thesis speciality: Optics, Université Paris XI, FranceGoogle Scholar
  33. 33.
    Galimi F, Torti D, Sassi F, Isella C, Corà D, Gastaldi S, Ribero D, Muratore A, Massucco P, Siatis D, Paraluppi G, Gonella F, Maione F, Pisacane A, David E, Torchio B, Risio M, Salizzoni M, Capussotti L, Perera T, Medico E, Di Renzo MF, Comoglio PM, Trusolino L, Bertotti A (2011) Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to met inhibition in patient xenografts and pathologic correlations. Clin Cancer Res 17:3146–3156CrossRefGoogle Scholar
  34. 34.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  35. 35.
    Luchansky MS, Washburn AL, Martin TA, Iqbal M, Gunn LC, Bailey RC (2010) Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform. Biosens Bioelectron 26:1283–1291CrossRefGoogle Scholar
  36. 36.
    Danz N, Kick A, Sonntag F, Schmieder S, Höfer B, Klotzbach U, Mertig M (2011) Surface plasmon resonance platform technology for multi-parameter analyses on polymer chips. Eng Life Sci 11:566–572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alberto Sinibaldi
    • 1
  • Aleksei Anopchenko
    • 1
  • Riccardo Rizzo
    • 1
    • 2
  • Norbert Danz
    • 2
  • Peter Munzert
    • 2
  • Paola Rivolo
    • 3
  • Francesca Frascella
    • 3
  • Serena Ricciardi
    • 3
  • Francesco Michelotti
    • 1
  1. 1.Department of Basic and Applied Science for EngineeringSapienza University of RomeRomeItaly
  2. 2.Fraunhofer Institute for Applied Optics and Engineering IOFJenaGermany
  3. 3.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly

Personalised recommendations