Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 5143–5160 | Cite as

The Updated Bottom Up Solution applied to mass spectrometry of soybean oil in a dietary supplement gelcap

  • William Craig ByrdwellEmail author
Research Paper
Part of the following topical collections:
  1. Lipidomics

Abstract

Among the goals of lipidomics applied to triacylglycerols (TAGs) is identification of molecular species, degree and location of unsaturation, and positions of fatty acyl chains (i.e., identification of regioisomers). Toward those ends, we define one, two, and three “Critical Ratios” for Types I, II, and III TAGs that provided different aspects of the desired information. Critical Ratio 1, [MH]+/Σ[DAG]+, is correlated to the degree of unsaturation ([MH]+ is the protonated molecule and Σ[DAG]+ is the sum of diacylglycerol-like ions, [DAG]+); Critical Ratio 2, [AA]+/[AB]+ for Type II TAGs (“ABA/AAB/BAA”) and [AC]+/([AB]++[BC]+) for Type III TAGs (“ABC/CBA/BAC/CAB/ACB/BCA”), is correlated to identification of regioisomers; and Critical Ratio 3, [BC]+/[AB]+, provides information about those [DAG]+ from Type III TAGs. Furthermore, Critical Ratios are used in the Updated Bottom Up Solution (UBUS) to reproduce the mass spectra of TAGs by atmospheric pressure chemical ionization mass spectrometry applied to analysis of soybean oil in a dietary supplement gelcap. We present a new model for the [MH]+/Σ[DAG]+ ratio, quantify regioisomers using the [AA]+/[AB]+ ratio, and describe trends for [BC]+/[AB]+ that have never been reported before. The UBUS is also applied to other classes of molecules, i.e., vitamin D and DAGs. The amount of vitamin D3 in the gelcap fell from 2011 ± 22 when received to 1689 ± 33 just prior to expiration. The Critical Ratios constitute a compact data set that can provide structural information and also act as a library of mass spectra.

Graphical Abstract

The shape of the Updated Bottom Up Solution for Type II triacylglycerols

Keywords

APCI-MS Triacylglycerols Regioisomers Soybean oil Lipidomics 

Notes

Acknowledgments

The work of Dr. Robert Goldschmidt in assisting with some integration and reporting functions is gratefully acknowledged. This work was supported by the USDA Agricultural Research Service. Mention or use of specific products or brands do not represent or imply endorsement by the USDA.

Compliance with ethical standards

The author declares no potential conflicts of interest with respect to the performance of experiments, authorship, or publication of this article.

Supplementary material

216_2015_8590_MOESM1_ESM.pdf (204 kb)
ESM 1 (PDF 203 kb)
216_2015_8590_MOESM2_ESM.xls (1.1 mb)
ESM 2 (XLS 1160 kb)
216_2015_8590_MOESM3_ESM.xls (2.7 mb)
ESM 3 (XLS 2739 kb)

References

  1. 1.
    Hunter JE (2001) Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36(7):655–668CrossRefGoogle Scholar
  2. 2.
    Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, Becker W (2014) Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutri Res 58. doi: 10.3402/fnr.v58.25145
  3. 3.
    Bézard J, Blond JP, Bernard A, Clouet P (1994) The metabolism and availability of essential fatty acids in animal and human tissues. Reprod Nutr Dev 34(6):539–568CrossRefGoogle Scholar
  4. 4.
    Mu H, Porsgaard T (2005) The metabolism of structured triacylglycerols. Prog Lipid Res 44(6):430–448. doi: 10.1016/j.plipres.2005.09.002 CrossRefGoogle Scholar
  5. 5.
    Karupaiah T, Sundram K (2007) Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4. doi: 10.1186/1743-7075-4-16
  6. 6.
    Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109(7):710–732. doi: 10.1002/ejlt.200700040 CrossRefGoogle Scholar
  7. 7.
    Byrdwell WC, Emken EA (1995) Analysis of triglycerides using atmospheric pressure chemical ionization mass spectrometry. Lipids 30(2):173–175. doi: 10.1007/BF02538272 CrossRefGoogle Scholar
  8. 8.
    Neff WE, Byrdwell WC (1995) Soybean oil triacylglycerol analysis by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. JAOCS, J Am Oil Chem Soc 72(10):1185–1191CrossRefGoogle Scholar
  9. 9.
    Byrdwell WC, Emken EA, Neff WE, Adlof RO (1996) Quantitative analysis of triglycerides using atmospheric pressure chemical ionization-mass spectrometry. Lipids 31(9):919–935CrossRefGoogle Scholar
  10. 10.
    Laakso P, Voutilainen P (1996) Analysis of triacylglycerols by silver-ion high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Lipids 31(12):1311–1322CrossRefGoogle Scholar
  11. 11.
    Laakso P (1997) Characterization of alpha- and gamma-linolenic acid oils by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. JAOCS, J Am Oil Chem Soc 74(10):1291–1300CrossRefGoogle Scholar
  12. 12.
    Duffin KL, Henion JD, Shieh JJ (1991) Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Anal Chem 63(17):1781–1788CrossRefGoogle Scholar
  13. 13.
    Cheng C, Gross ML, Pittenauer E (1998) Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70(20):4417–4426CrossRefGoogle Scholar
  14. 14.
    Schuyl PJW, De Joode T, Vasconcellos MA, Duchateau GSMJE (1998) Silver-phase high-performance liquid chromatography-electrospray mass spectrometry of triacylglycerols. J Chromatogr A 810(1–2):53–61. doi: 10.1016/S0021-9673(98)00277-5 CrossRefGoogle Scholar
  15. 15.
    Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10(7):587–599CrossRefGoogle Scholar
  16. 16.
    Hvattum E (2001) Analysis of triacylglycerols with non-aqueous reversed-phase liquid chromatography and positive ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 15(3):187–190. doi: 10.1002/1097-0231(20010215)15:3<187::AID-RCM211>3.0.CO;2-T CrossRefGoogle Scholar
  17. 17.
    Marzilli LA, Fay LB, Dionisi F, Vouros P (2003) Structural characterization of triacylglycerols using electrospray ionization-MSn ion-trap MS. JAOCS, J Am Oil Chem Soc 80(3):195–202CrossRefGoogle Scholar
  18. 18.
    Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36(4):327–346CrossRefGoogle Scholar
  19. 19.
    Mottram HR (2005) Regioisomeric analysis of triacylglycerols using high performance liquid chromatography/ atmospheric pressure chemical ionization mass spectrometry. In: Byrdwell WC (ed) Modern Methods for Lipid Analysis by Liquid Chromatography/ Mass Spectrometry and Related Techniques. AOCS Press, Champaign, pp 276–297Google Scholar
  20. 20.
    Řezanka T, Sigler K (2007) The use of atmospheric pressure chemical ionization mass spectrometry with high performance liquid chromatography and other separation techniques for identification of triacylglycerols. Curr Anal Chem 3(4):252–271. doi: 10.2174/157341107782109644 CrossRefGoogle Scholar
  21. 21.
    Byrdwell WC (2005) Qualitative and quantitative analysis of triacylglycerols by atmospheric pressure ionization (APCI and ESI) mass spectrometry techniques. In: Byrdwell WC (ed) Modern methods for lipid analysis by liquid chromatography/ mass spectrometry and related techniques. AOCS Press, Champaign, pp 298–412CrossRefGoogle Scholar
  22. 22.
    Murphy RC, Leiker TJ, Barkley RM (2011) Glycerolipid and cholesterol ester analyses in biological samples by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811(11):776–783. doi: 10.1016/j.bbalip.2011.06.019 CrossRefGoogle Scholar
  23. 23.
    Cozzolino R, De Giulio B (2011) Application of ESI and MALDI-TOF MS for triacylglycerols analysis in edible oils. Eur J Lipid Sci Technol 113(2):160–167CrossRefGoogle Scholar
  24. 24.
    Sandra K, Sandra P (2013) Lipidomics from an analytical perspective. Curr Opin Chem Biol 17(5):847–853. doi: 10.1016/j.cbpa.2013.06.010 CrossRefGoogle Scholar
  25. 25.
    Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal Chem 61:192–206. doi: 10.1016/j.trac.2014.04.017 CrossRefGoogle Scholar
  26. 26.
    Mottram HR, Evershed RP (1996) Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry. Tetrahedron Lett 37(47):8593–8596CrossRefGoogle Scholar
  27. 27.
    Fauconnot L, Hau J, Aeschlimann JM, Fay LB, Dionisi F (2004) Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 18(2):218–224CrossRefGoogle Scholar
  28. 28.
    Byrdwell WC (2005) The bottom-up solution to the triacylglycerol lipidome using atmospheric pressure chemical ionization mass spectrometry. Lipids 40(4):383–417. doi: 10.1007/s11745-006-1398-9 CrossRefGoogle Scholar
  29. 29.
    Holcapek M, Dvorakova H, Lisa M, Giron AJ, Sandra P, Cvacka J (2010) Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry: comparison of five different mass analyzers. J Chromatogr A 1217(52):8186–8194CrossRefGoogle Scholar
  30. 30.
    Jakab A, Jablonkai I, Forgács E (2003) Quantification of the ratio of positional isomer dilinoleoyl-oleoyl glycerols in vegetable oils. Rapid Commun Mass Spectrom 17(20):2295–2302CrossRefGoogle Scholar
  31. 31.
    Manninen P, Laakso P (1997) Capillary supercritical fluid chromatography-atmospheric pressure chemical ionization mass spectrometry of triacylglycerols in berry oils. JAOCS, J Am Oil Chem Soc 74(9):1089–1098CrossRefGoogle Scholar
  32. 32.
    Byrdwell WC (2011) “Dilute-and-shoot” triple parallel mass spectrometry method for analysis of vitamin D and triacylglycerols in dietary supplements. Anal Bioanal Chem 401(10):3317–3334. doi: 10.1007/s00216-011-5406-4 CrossRefGoogle Scholar
  33. 33.
    Byrdwell WC (2013) Quadruple parallel mass spectrometry for analysis of vitamin D and triacylglycerols in a dietary supplement. J Chromatogr A 1320:48–65. doi: 10.1016/j.chroma.2013.10.031 CrossRefGoogle Scholar
  34. 34.
    Byrdwell WC, Neff WE, List GR (2001) Triacylglycerol analysis of potential margarine base stocks by high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry and, flame ionization detection. J Agric Food Chem 49(1):446–457. doi: 10.1021/jf0008801 CrossRefGoogle Scholar
  35. 35.
    Byrdwell WC (2014) Extract-filter-shoot liquid chromatography with mass spectrometry for the analysis of vitamin D2 in a powdered supplement capsule and standard reference material 3280. J Sep Sci 37(16):2095–2110. doi: 10.1002/jssc.201400234 CrossRefGoogle Scholar
  36. 36.
    Byrdwell WC, Neff WE (1997) Qualitative and quantitative analysis of triacylglycerols using atmospheric pressure chemical ionization mass spectrometry. In: McDonald RE, Mossoba MM (eds) New techniques and applications in lipid analysis. AOCS Press, Champaign, pp 45–80Google Scholar
  37. 37.
    Yamamoto H (1977) Calculations of isotopic distribution in molecules extensively labeled with heavy isotopes. Anal Chem 49(2):281–283CrossRefGoogle Scholar
  38. 38.
    Patiny L, Borel A (2013) ChemCalc: a building block for tomorrow’s chemical infrastructure. J Chem Inf Model 53(5):1223–1228. doi: 10.1021/ci300563h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  1. 1.Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, USDAAgricultural Research ServiceBeltsvilleUSA

Personalised recommendations