Skip to main content
Log in

Cysteine residue is not essential for CPM protein thermal-stability assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A popular thermal-stability assay developed especially for the study of membrane proteins uses a thiol-specific probe, 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). The fluorescence emission of CPM surges when it forms a covalent bond with the side chain of a free Cys, which becomes more readily accessible upon protein thermal denaturation. Interestingly, the melting temperatures of membrane proteins determined using the CPM assay in literature are closely clustered in the temperature range 45–55 °C. A thorough understanding of the mechanism behind the observed signal change is critical for the accurate interpretation of the protein unfolding. Here we used two α-helical membrane proteins, AqpZ and AcrB, as model systems to investigate the nature of the fluorescence surge in the CPM assay. We found that the transition temperatures measured using circular-dichroism (CD) spectroscopy and the CPM assay were significantly different. To eliminate potential artifact that might arise from the presence of detergent, we monitored the unfolding of two soluble proteins. We found that, contrary to current understanding, the presence of a sulfhydryl group was not a prerequisite for the CPM thermal-stability assay. The observed fluorescence increase is probably caused by binding of the fluorophore to hydrophobic patches exposed upon protein unfolding.

Structure of proteins used in this study (AcrB, AqpZ, Ovalbumin, and Lysozyme) and effect of urea on the thermal denaturation plots of ovalbumin monitored using CD or CPM assay

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong H, Joh NH, Bowie JU, Tamm LK (2009) Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol 455:213–236

    Article  CAS  Google Scholar 

  2. Yeh AP, McMillan A, Stowell MH (2006) Rapid and simple protein-stability screens: application to membrane proteins. Acta Crystallogr D Biol Crystallogr 62:451–457

    Article  Google Scholar 

  3. Kashino Y (2003) Separation methods in the analysis of protein membrane complexes. J Chromatogr B 797:191–216

    Article  CAS  Google Scholar 

  4. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  Google Scholar 

  5. Popot JL, Engelman DE (2000) Helical membrane protein folding, stability and evolution. Annu Rev Biochem 69:881–922

    Article  CAS  Google Scholar 

  6. Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  CAS  Google Scholar 

  7. Senisterra G, Chau I, Vedadi M (2012) Thermal denaturation assays in chemical biology. Assay Drug Dev Technol 10:128–136

    Article  CAS  Google Scholar 

  8. O'Malley MA, Naranjo AN, Lazarova T, Robinson AS (2010) Analysis of adenosine A(2)a receptor stability: effects of ligands and disulfide bonds. Biochemistry 49:9181–9189

    Article  Google Scholar 

  9. Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P (1999) Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J Mol Biol 291:1169–1179

    Article  CAS  Google Scholar 

  10. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 106:7173–7178

    Article  CAS  Google Scholar 

  11. Fothergill LA, Fothergill JE (1969) Thiol and disulfphide contens of hen ovalbumin. Biochem J 116:555–561

    Google Scholar 

  12. Canfield R, Liu A (1965) The disulfide bonds of egg white lysozyme (Muramidase). J Biol Chem 240:1997–2002

    CAS  Google Scholar 

  13. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566

    Article  CAS  Google Scholar 

  14. Lu W, Zhong M, Wei Y (2011) Folding of AcrB subunit precedes trimerization. J Mol Biol 411:264–274

    Article  CAS  Google Scholar 

  15. Ye C, Wang Z, Lu W, Zhong M, Chai Q, Wei Y (2014) Correlation between AcrB trimer association affinity and efflux activity. Biochemistry 53:3738–3746

    Article  CAS  Google Scholar 

  16. Finkelstein AV, Badretdinov AY, Gutin AM (1995) Why do protein architectures have boltzmann-like statistics. Proteins Struct Funct Bioinf 23:142–150

    Article  CAS  Google Scholar 

  17. Yu L, Lu W, Wei Y (2011) AcrB trimer stability and efflux activity, instight from mutagenesis studies. PLoS One 6:1–8

    Google Scholar 

  18. Xie M, Schowen RL (1998) Secondary structure and protein deamidation. J Pharm Sci 88:8–13

    Article  Google Scholar 

  19. Calamita G (2000) The Escherichia coli aquaporin-Z water channel. Mol Microbiol 37:254–262

    Article  CAS  Google Scholar 

  20. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) The molecular basis for the chemical denaturation of proteins by urea. Anal Biochem 357:289–298

    Article  CAS  Google Scholar 

  21. Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, O'Reilly N, Hanrahan SJ, Thompson AJ, Cronin N, Iwata S, Barford D (2013) Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504:301–305

    Article  CAS  Google Scholar 

  22. Lee SC, Bennett BC, Hong WX, Fu Y, Baker KA, Marcoux J, Robinson CV, Ward AB, Halpert JR, Stevens RC, Stout CD, Yeager MJ, Zhang Q (2013) Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proc Natl Acad Sci U S A 110:E1203–E1211

    Article  CAS  Google Scholar 

  23. Tol MB, Deluz C, Hassaine G, Graff A, Stahlberg H, Vogel H (2013) Thermal unfolding of a mammalian pentameric ligand-gated ion channel proceeds at consecutive, distinct steps. J Biol Chem 288:5756–5769

    Article  CAS  Google Scholar 

  24. Tao H, Fu Y, Thompson A, Lee SC, Mahoney N, Stevens RC, Zhang Q (2012) Synthesis and properties of dodecyl trehaloside detergents for membrane protein studies. Langmuir 28:11173–11181

    Article  CAS  Google Scholar 

  25. Haberstock S, Roos C, Hoevels Y, Dotsch V, Schnapp G, Pautsch A, Bernhard F (2012) A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr Purif 82:308–316

    Article  CAS  Google Scholar 

  26. Thompson AA, Liu JJ, Chun E, Wacker D, Wu H, Cherezov V, Stevens RC (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55:310–317

    Article  CAS  Google Scholar 

  27. Tarttelin EE, Fransen MP, Edwards PC, Hankins MW, Schertler GF, Vogel R, Lucas RJ, Bellingham J (2011) Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay. Cell Mol Life Sci 68:3713–3723

    Article  CAS  Google Scholar 

  28. Bennion BJ, Daggett V (2003) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Proc Natl Acad Sci U S A 100:5142–5147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Trevor Creamer (University of Kentucky) for helpful discussions. This work was supported by the National Science Foundation (MCB 1158036, YW), National Institute of Health (1R21AI103717, YW), and Kentucky Science and Engineering Foundation (KSEF-148-502-14-332, YW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ye, C., Zhang, X. et al. Cysteine residue is not essential for CPM protein thermal-stability assay. Anal Bioanal Chem 407, 3683–3691 (2015). https://doi.org/10.1007/s00216-015-8587-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8587-4

Keywords

Navigation