Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3481–3488 | Cite as

Hairpin-based DNA electrochemical sensor for selective detection of a repetitive and structured target codifying a gliadin fragment

  • Begoña Martín-Fernández
  • Noemí de-los-Santos-Álvarez
  • María Jesús Lobo-Castañón
  • Beatriz López-RuizEmail author
Research Paper

Abstract

High selectivity of genosensors is crucial for certain applications such as those involving species with high genetic variability. This is an unresolved problem when dealing with long target sequences that is further complicated when the target contains repetitive sequence domains. As a model for this situation, the problem of detecting gluten in food with identification of the source is studied. In order to discriminate the specific DNA sequence that encodes the wheat prolamin (gliadin) from rye and barley prolamins, the exquisite selectivity of a rationally designed hairpin capture probe is proposed and compared to a nonstructured capture probe. An electrochemical sandwich assay is proposed, involving capture probes chemisorbed on Au surfaces and biotinylated-signaling probes in combination with streptavidin-peroxidase labeling conjugates. As a result, a genosensor with similar sensitivity to that observed with linear probes but with complete specificity against closely related species was achieved. The surface-attached DNA stem-loop yields a device capable of accurately discriminating wheat DNA from rye and barley with a limit of detection of 1 nM.

Graphical Abstract

Hairpin-based DNA sensor for the highly selective detection of wheat sequence

Keywords

Hairpin-DNA probe Electrochemical genosensor Self-assembled monolayers Enzyme amplification Screen-printed gold electrodes Specificity 

Notes

Acknowledgments

B.M.F. thanks to Universidad Complutense de Madrid for a predoctoral grant. This work has been cofinanced by Projects CTQ2008-02429/BQU granted to “Grupos Consolidados”, CTQ2012-31157 and the European Regional Development Fund.

References

  1. 1.
    Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3):2356–2361CrossRefGoogle Scholar
  2. 2.
    Lubin AA, Vander Stoep Hunt B, White RJ, Plaxco KW (2009) Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor. Anal Chem 81(6):2150–2158CrossRefGoogle Scholar
  3. 3.
    Letowski J, Brousseau R, Masson L (2004) Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods 57(2):269–278CrossRefGoogle Scholar
  4. 4.
    Caruana DJ, Heller A (1999) Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-μm-diameter microelectrode. J Am Chem Soc 121(4):769–774CrossRefGoogle Scholar
  5. 5.
    Peterson AW, Wolf LK, Georgiadis RM (2002) Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc 124(49):14601–14607CrossRefGoogle Scholar
  6. 6.
    Kim K, Yang H, Park SH, Lee D-S, Kim S-J, Lim YT, Kim YT (2004) Washing-free electrochemical DNA detection using double-stranded probes and competitive hybridization reaction. Chem Commun 13:1466–1467CrossRefGoogle Scholar
  7. 7.
    Herzer S, Englert DF (2001) Nucleic acid hybridization. Molecular biology problem solver: a laboratory guide. Wiley-Liss, New YorkGoogle Scholar
  8. 8.
    Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal Chem 75(18):4732–4739CrossRefGoogle Scholar
  9. 9.
    Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2009) A structured nucleic acid probes for electrochemical devices. Electroanalysis 21(19):2077–2090CrossRefGoogle Scholar
  10. 10.
    Abi A, Ferapontova E (2013) Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures. Anal Bioanal Chem 405(11):3693–3703CrossRefGoogle Scholar
  11. 11.
    Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res 31(4):1319–1330CrossRefGoogle Scholar
  12. 12.
    Miranda-Castro R, de-Los-Santos-Alvarez P, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2007) Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Anal Chem 79(11):4050–4055CrossRefGoogle Scholar
  13. 13.
    Kjällman THM, Peng H, Soeller C, Travas-Sejdic J (2008) Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem 80(24):9460–9466CrossRefGoogle Scholar
  14. 14.
    Martin-Fernandez B, Miranda-Ordieres AJ, Lobo-Castanon MJ, Frutos-Cabanillas G, de-los-Santos-Alvarez N, Lopez-Ruiz B (2014) Strongly structured DNA sequences as targets for genosensing: sensing phase design and coupling to PCR amplification for a highly specific 33-mer gliadin DNA fragment. Biosens Bioelectron 60:244–251CrossRefGoogle Scholar
  15. 15.
    European Union (2009) Commission Regulation (EC) No.41/2009.Off J Eur Union L16Google Scholar
  16. 16.
    Amigo CD, Popping B (2012) Labeling regulations, detection methods, and assay validation. J AOAC Int 95(2):337–348. doi: 10.5740/jaoacint.SGE_Diaz-Amigo CrossRefGoogle Scholar
  17. 17.
    Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray G, Sollid L, Khosla C (2002) Structural basis for gluten intolerance in Celiac sprue. Science 297(5590):2275–2279. doi: 10.1126/science.1074129 CrossRefGoogle Scholar
  18. 18.
    Lin M, Wen Y, Li L, Pei H, Liu G, Song H, Zuo X, Fan C, Huang Q (2014) Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. Anal Chem 86(5):2285–2288. doi: 10.1021/ac500251t CrossRefGoogle Scholar
  19. 19.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar
  20. 20.
    Fernández BM, Palenzuela CLM, López MSP, Ruiz BL, Cabanillas GF (2012) Electrochemical genosensor for indirect wheat gluten detection in food. An Real Acad Farm 3:323–343Google Scholar
  21. 21.
    Levicky R, Horgan A (2005) Physicochemical perspectives on DNA microarray and biosensor technologies. Trends Biotechnol 23(3):143–149CrossRefGoogle Scholar
  22. 22.
    Liu Y, Li H, Chen W, Liu A, Lin X, Chen Y (2013) Bovine serum albumin-based probe carrier platform for electrochemical DNA biosensing. Anal Chem 85(1):273–277CrossRefGoogle Scholar
  23. 23.
    Gonzalez-Alvarez M, Perez-Ruiz E, Miranda-Castro R, de-los-Santos-Alvarez N, Miranda-Ordieres A, Lobo-Castanon M (2013) Effect of tags and labels on the performance of enzyme-amplified electrochemical genomagnetic assays. Electroanalysis 25(1):147–153CrossRefGoogle Scholar
  24. 24.
    Li Q, Cheng W, Zhang D, Yu T, Yin Y, Ju H, Ding S (2012) Rapid and sensitive strategy for salmonella detection using an InvA gene-based electrochemical DNA sensor. Int J Electrochem Sci 7(1):844–856Google Scholar
  25. 25.
    Bettazzi F, Lucarelli F, Palchetti I, Berti F, Marrazza G, Mascini M (2008) Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal Chim Acta 614(1):93–102. doi: 10.1016/j.aca.2008.03.027 CrossRefGoogle Scholar
  26. 26.
    Campuzano S, Kuralay F, Wang J (2012) Ternary monolayer interfaces for ultrasensitive and direct bioelectronic detection of nucleic acids in complex matrices. Electroanalysis 24(3):483–493CrossRefGoogle Scholar
  27. 27.
    Raoof M, Jans K, Bryce G, Ebrahim S, Lagae L, Witvrouw A (2013) Improving the selectivity by using different blocking agents in DNA hybridization assays for SiGe bio-molecular sensors. Microelectron Eng 111:421–424CrossRefGoogle Scholar
  28. 28.
    Wang W, Wang YJ, Wang DQ (2008) Dual effects of Tween 80 on protein stability. Int J Pharm 347(1–2):31–38CrossRefGoogle Scholar
  29. 29.
    Ha E, Wang W, Wang YJ (2002) Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci 91(10):2252–2264CrossRefGoogle Scholar
  30. 30.
    Ku W, Lau W, Tseng Y, Tzeng C, Chiu S (2004) Dextran sulfate provides a quantitative and quick microarray hybridization reaction. Biochem Biophys Res Commun 315(1):30–37CrossRefGoogle Scholar
  31. 31.
    Garcia-Mendiola T, Gamero M, Campuzano S, Revenga-Parra M, Alonso C, Pedrero M, Pariente F, Pingarron J, Lorenzo E (2013) Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors. Anal Chim Acta 788:141–147CrossRefGoogle Scholar
  32. 32.
    Flechsig G-U, Peter J, Hartwich G, Wang J, Gründler P (2005) DNA hybridization detection at heated electrodes. Langmuir 21(17):7848–7853CrossRefGoogle Scholar
  33. 33.
    Walter A, Surkus A-E, Flechsig G-U (2013) Hybridization detection of enzyme-labeled DNA at electrically heated electrodes. Anal Bioanal Chem 405(11):3907–3911CrossRefGoogle Scholar
  34. 34.
    Carpini G, Lucarelli F, Marrazza G, Mascini M (2004) Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens Bioelectron 20(2):167–175CrossRefGoogle Scholar
  35. 35.
    Rose K, Mason J, Lathe R (2002) Hybridization parameters revisited: solutions containing SDS. Biotechniques 33(1):54–58Google Scholar
  36. 36.
    Chen D, Li J (2006) Interfacial design and functionization on metal electrodes through self-assembled monolayers. Surf Sci Rep 61(11):445–463CrossRefGoogle Scholar
  37. 37.
    Kuralay F, Campuzano S, Wang J (2012) Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers. Talanta 99:155–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Begoña Martín-Fernández
    • 1
  • Noemí de-los-Santos-Álvarez
    • 2
  • María Jesús Lobo-Castañón
    • 2
  • Beatriz López-Ruiz
    • 1
    Email author
  1. 1.Sección Departamental de Química Analítica, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Química Física y AnalíticaUniversidad de OviedoOviedoSpain

Personalised recommendations