Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 5113–5123 | Cite as

Nutrition-dependent changes of mouse adipose tissue compositions monitored by NMR, MS, and chromatographic methods

  • Yulia Popkova
  • Andrej Meusel
  • Jana Breitfeld
  • Dorit Schleinitz
  • Johannes Hirrlinger
  • Dirk Dannenberger
  • Peter Kovacs
  • Jürgen SchillerEmail author
Research Paper
Part of the following topical collections:
  1. Lipidomics


Many diseases nowadays are assumed to be genetically determined. Therefore, many knockout mouse models have been established and are widely used. Unfortunately, nutrition (in particular the fat content of food) is often neglected in studies on these disease models. In this study the effects of nutrition on the lipid (triacylglycerol, TAG) compositions of different mouse adipose tissues were investigated. Mice were subjected to different diets [high fat (HF) vs. standard diet (SD)] and different adipose tissue samples (brown, visceral, and subcutaneous fat) were isolated after 12 weeks. Subsequent to lipid extraction, the organic extracts were analyzed by mass spectrometry (MALDI and ESI), high-resolution 1H and 31P NMR spectroscopy, high-performance thin-layer chromatography (HPTLC), and gas chromatography (GC). In adipose tissue of mice fed with HF diet, (a) decreased double bond contents and (b) decreased fatty acyl chain lengths of tissue TAGs were observed; this trend could be concomitantly monitored by all methods used. However, the adipose tissue still contained significant amounts of slightly unsaturated fatty acyl residues (18:1). Thus, a certain double bond content seems necessary to maintain the properties of adipose tissues.

Graphical Abstract

The compositions of different mouse adipose tissues is massively influenced by the composition of the supplied diet. This will be shown by using independent spectroscopic and chromatographic methods.


Adipose tissue Triacylglycerols Phospholipids Double bond content MALDI MS NMR spectroscopy Gas chromatography 



This work was supported by the German Research Council (SFB 1052/B3 and B6). Dorit Schleinitz is funded by the Boehringer Ingelheim Foundation. We thank Dr. Beate Fuchs for performing the 31P NMR measurements and James Kranz for careful reading the manuscript.

Supplementary material

216_2015_8551_MOESM1_ESM.pdf (10 kb)
ESM 1 (PDF 9 kb)


  1. 1.
    Neeha VS, Kinth P (2013) Nutrigenomics research: a review. J Food Sci Technol 50:415–428CrossRefGoogle Scholar
  2. 2.
    Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Müller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS One 5:e11525CrossRefGoogle Scholar
  3. 3.
    Di Costanzo G, Giudicelli Y (1972) Etude analytique des phospholipides du tissu adipeux humain. Biochimie 54:121–122CrossRefGoogle Scholar
  4. 4.
    Cogneville AM, Cividino N, Tordet-Caridroit C (1975) Lipid composition of brown adipose tissue as related to nutrition during the neonatal period in hypotrophic rats. J Nutr 105:982–988Google Scholar
  5. 5.
    Saha SK, Ohno T, Ohinata H, Kuroshima A (1999) In vitro thermogenesis and phospholipid fatty acid composition of brown adipose tissue in fasted and refed rats. Jpn J Physiol 49:345–352CrossRefGoogle Scholar
  6. 6.
    Dannenberger D, Nuernberg G, Scollan N, Ender K, Nuernberg K (2007) Diet alters the fatty acid composition of individual phospholipid classes in beef muscle. J Agric Food Chem 55:452–460CrossRefGoogle Scholar
  7. 7.
    Hayasaka T, Goto-Inoue N, Zaima N, Kimura Y, Setou M (2009) Organ-specific distributions of lysophosphatidylcholine and triacylglycerol in mouse embryo. Lipids 44:837–848CrossRefGoogle Scholar
  8. 8.
    Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412CrossRefGoogle Scholar
  9. 9.
    Fuchs B, Süss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475CrossRefGoogle Scholar
  10. 10.
    Rieger D, Auerbach S, Robinson P, Gropman A (2013) Neuroimaging of lipid storage disorders. Dev Disabil Res Rev 17:269–282CrossRefGoogle Scholar
  11. 11.
    Pollesello P, Eriksson O, Hockerstedt K (1996) Analysis of total lipid extracts from human liver by 13C and 1H nuclear magnetic resonance spectroscopy. Anal Biochem 236:41–48CrossRefGoogle Scholar
  12. 12.
    Schiller J, Müller M, Fuchs B, Arnold K, Huster D (2007) 31P NMR spectroscopy of phospholipids: from micelles to membranes. Curr Anal Chem 3:283–301CrossRefGoogle Scholar
  13. 13.
    Fuchs B, Süss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography—a review of the current state. J Chromatogr A 1218:2754–2774CrossRefGoogle Scholar
  14. 14.
    Hellmuth C, Uhl O, Segura-Moreno M, Demmelmair H, Koletzko B (2011) Determination of acylglycerols from biological samples with chromatography-based methods. J Sep Sci 34:3470–3483CrossRefGoogle Scholar
  15. 15.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114CrossRefGoogle Scholar
  16. 16.
    Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146CrossRefGoogle Scholar
  17. 17.
    Chena S, Hoene M, Li J, Li Y, Zhaoa X, Häring HU, Schleicher ED, Weigert C, Xua G, Lehmann R (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A 1298:9–16CrossRefGoogle Scholar
  18. 18.
    Schiller J, Süss R, Fuchs B, Müller M, Petković M, Zschörnig O, Waschipky H (2007) The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: which isomer for what purpose? Eur Biophys J 36:517–527CrossRefGoogle Scholar
  19. 19.
    Bresler K, Pyttel S, Paasch U, Schiller J (2011) Parameters affecting the accuracy of the MALDI-TOF MS determination of the phosphatidylcholine/lysophosphatidylcholine (PC/LPC) ratio as potential marker of spermatozoa quality. Chem Phys Lipids 164:696–702CrossRefGoogle Scholar
  20. 20.
    Bharti SK, Sinha N, Joshi BS, Mandal SK, Roy R, Khetrapal CL (2008) Improved quantification from 1H-NMR spectra using reduced repetition times. Metabolomics 4:367–376CrossRefGoogle Scholar
  21. 21.
    Pearce JM, Komoroski RA (2000) Analysis of phospholipid molecular species in brain by 31P NMR spectroscopy. Magn Reson Med 44:215–223CrossRefGoogle Scholar
  22. 22.
    White T, Bursten S, Federighi D, Lewis RA, Nudelman E (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 258:109–117CrossRefGoogle Scholar
  23. 23.
    Teuber K, Riemer T, Schiller J (2010) Thin-layer chromatography combined with MALDI-TOF-MS and 31P NMR to study possible selective bindings of phospholipids to silica gel. Anal Bioanal Chem 398:2833–2842CrossRefGoogle Scholar
  24. 24.
    Dannenberger D, Nuernberg K, Nuernberg G, Priepke A (2012) Different dietary protein and PUFA interventions alter the fatty acid concentrations, but not the meat quality, of porcine muscle. Nutrients 4:1237–1246CrossRefGoogle Scholar
  25. 25.
    Shen X, Dannenberger D, Nuernberg K, Nuernberg G, Zhao R (2011) Trans-18:1 and CLA isomers in rumen and duodenal digesta of bulls fed n-3 and n-6 PUFA-based diets. Lipids 46:831–841CrossRefGoogle Scholar
  26. 26.
    Saely CH (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58:15–23CrossRefGoogle Scholar
  27. 27.
    Hoene M, Li J (2014) The lipid profile of brown adipose tissue is sex-specific in mice. Biochim Biophys Acta 1841:1563–1570CrossRefGoogle Scholar
  28. 28.
    Schiller J, Süß R, Petković M, Hanke G, Vogel A, Arnold K (2002) Effects of thermal stressing on saturated vegetable oils and isolated triacylglycerols–product analysis by MALDI-TOF mass spectrometry, NMR and IR spectroscopy. Eur J Lipid Sci Technol 104:496–505CrossRefGoogle Scholar
  29. 29.
    Jaskolla TW, Onischke K, Schiller J (2014) 2,5-Dihydroxybenzoic acid salts for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric lipid analysis: simplified spectra interpretation and insights into gas-phase fragmentation. Rapid Commun Mass Spectrom 28:1353–1363CrossRefGoogle Scholar
  30. 30.
    Bielawska K, Dziakowska I, Roszkowska-Jakimiec W (2010) Chromatographic determination of fatty acids in biological material. Toxicol Mech Methods 20:526–537CrossRefGoogle Scholar
  31. 31.
    Dannenberger D, Nuernberg G, Renne U, Nuernberg K, Langhammer M, Huber K, Breier B (2013) High fat diets rich in n-3 or n-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness. Nutrition 29:765–771CrossRefGoogle Scholar
  32. 32.
    Willmann J, Thiele H, Leibfritz D (2011) Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. J Biomed Biotechnol. doi: 10.1155/2011/385786
  33. 33.
    Aranibar N, Reily MD (2014) NMR methods for metabolomics of mammalian cell culture bioreactors. Methods Mol Biol 1104:223–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yulia Popkova
    • 1
  • Andrej Meusel
    • 1
  • Jana Breitfeld
    • 2
  • Dorit Schleinitz
    • 2
  • Johannes Hirrlinger
    • 3
    • 4
  • Dirk Dannenberger
    • 5
  • Peter Kovacs
    • 2
  • Jürgen Schiller
    • 1
    Email author
  1. 1.Medical Faculty, Institute of Medical Physics and BiophysicsUniversity of LeipzigLeipzigGermany
  2. 2.IFB Adiposity DiseasesUniversity of LeipzigLeipzigGermany
  3. 3.Medical Faculty, Carl-Ludwig-Institute for PhysiologyUniversity of LeipzigLeipzigGermany
  4. 4.Department of NeurogeneticsMax Planck Institute for Experimental MedicineGöttingenGermany
  5. 5.Leibniz Institute for Farm Animal BiologyInstitute of Muscle Biology and GrowthDummerstorfGermany

Personalised recommendations