Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 5175–5188 | Cite as

Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

  • Eva Háková
  • Vladimír Vrkoslav
  • Radka Míková
  • Karolina Schwarzová-Pecková
  • Zuzana Bosáková
  • Josef CvačkaEmail author
Research Paper
Part of the following topical collections:
  1. Lipidomics


A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N+• adducts ([M + 55]+•) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C–C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55]+• precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

Graphical Abstract

The diagnostic fragments in the APCI PQD MS2 spectrum of the [M + 55]+• adduct of triolein


Double bond Gas-phase chemistry Lipidomics Olive oil Vernix caseosa 



This work was financially supported by the Czech Science Foundation (Project No. P206/12/0750), the Academy of Sciences of the Czech Republic (RVO 61388963) and Charles University in Prague (Project SVV). The authors thank Dr. Miroslav Lísa for advices with the randomization synthesis.

Supplementary material

216_2015_8537_MOESM1_ESM.pdf (24.6 mb)
ESM 1 (PDF 24.6 mb)


  1. 1.
    Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook 3 edn. CRC, Boca RatonGoogle Scholar
  2. 2.
    Holčapek M, Jandera P, Fischer J, Prokeš B (1999) Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A 858(1):13–31CrossRefGoogle Scholar
  3. 3.
    Fauconnot L, Hau J, Aeschlimann JM, Fay LB, Dionisi F (2004) Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 18(2):218–224. doi: 10.1002/rcm.1317 CrossRefGoogle Scholar
  4. 4.
    Cvačka J, Hovorka O, Jiroš P, Kindl J, Stránský K, Valterová I (2006) Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J Chromatogr A 1101(1–2):226–237. doi: 10.1016/j.chroma.2005.10.001 CrossRefGoogle Scholar
  5. 5.
    Sandra K, Pereira AD, Vanhoenacker G, David F, Sandra P (2010) Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1217(25):4087–4099. doi: 10.1016/j.chroma.2010.02.039 CrossRefGoogle Scholar
  6. 6.
    Laakso P, Voutilainen P (1996) Analysis of triacylglycerols by silver-ion high-performance liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. Lipids 31(12):1311–1322. doi: 10.1007/bf02587918 CrossRefGoogle Scholar
  7. 7.
    Lísa M, Velínská H, Holčapek M (2009) Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem 81(10):3903–3910. doi: 10.1021/ac900150j CrossRefGoogle Scholar
  8. 8.
    Lísa M, Holčapek M (2013) Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal Chem 85(3):1852–1859. doi: 10.1021/ac303237a CrossRefGoogle Scholar
  9. 9.
    Dugo P, Kumm T, Crupi ML, Cotroneo A, Mondello L (2006) Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes. J Chromatogr A 1112(1–2):269–275. doi: 10.1016/j.chroma.2005.10.070 CrossRefGoogle Scholar
  10. 10.
    van der Klift EJC, Vivo-Truyols G, Claassen FW, van Holthoon FL, van Beek TA (2008) Comprehensive two-dimensional liquid chromatography with ultraviolet, evaporative light scattering and mass spectrometric detection of triacylglycerols in corn oil. J Chromatogr A 1178(1–2):43–55. doi: 10.1016/j.chroma.2007.11.039 CrossRefGoogle Scholar
  11. 11.
    Perrin JL, Naudet M (1983) Identification and determination of triglycerides in natural fats by high-performance liquid-chromatography. Revue Francaise Des Corps Gras 30(7–8):279–285Google Scholar
  12. 12.
    Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10(7):587–599. doi: 10.1016/s1044-0305(99)00035-5 CrossRefGoogle Scholar
  13. 13.
    Holčapek M, Jandera P, Zderadička P, Hrubá L (2003) Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1010(2):195–215. doi: 10.1016/s0021-9673(03)01030-6 CrossRefGoogle Scholar
  14. 14.
    Han XL, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. doi: 10.1194/jlr. R300004-JLR200 CrossRefGoogle Scholar
  15. 15.
    Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36(4):327–346. doi: 10.1007/s11745-001-0725-5 CrossRefGoogle Scholar
  16. 16.
    Cai SS, Syage JA (2006) Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem 78(4):1191–1199. doi: 10.1021/ac0515834 CrossRefGoogle Scholar
  17. 17.
    Asbury GR, Al-Saad K, Siems WF, Hannan RM, Hill HH (1999) Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom 10(10):983–991. doi: 10.1016/s1044-0305(99)00063-x CrossRefGoogle Scholar
  18. 18.
    Pittenauer E, Allmaier G (2009) The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J Am Soc Mass Spectrom 20(6):1037–1047. doi: 10.1016/j.jasms.2009.01.009 CrossRefGoogle Scholar
  19. 19.
    Kofroňová E, Cvačka J, Vrkoslav V, Hanus R, Jiroš P, Kindl J, Hovorka O, Valterová I (2009) A comparison of HPLC/APCI-MS and MALDI-MS for characterising triacylglycerols in insects: species-specific composition of lipids in the fat bodies of bumblebee males. J Chromatogr B-Anal Technol Biomed Life Sci 877(30):3878–3884. doi: 10.1016/j.jchromb.2009.09.040 CrossRefGoogle Scholar
  20. 20.
    Suni NM, Aalto H, Kauppila TJ, Kotiaho T, Kostiainen R (2012) Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J Mass Spectrom 47(5):611–619. doi: 10.1002/jms.2992 CrossRefGoogle Scholar
  21. 21.
    Cheng CF, Gross ML (1998) Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70(20):4417–4426. doi: 10.1021/ac9805192 CrossRefGoogle Scholar
  22. 22.
    Lauer WM, Aasen AJ, Graff G, Holman RT (1970) Mass spectrometry of lipids. 5. Mass spectrometry of triglycerides. 1. Structural effects. Lipids 5(11):861–868. doi: 10.1007/bf02531117 CrossRefGoogle Scholar
  23. 23.
    Games DE (1978) Soft ionization mass-spectral methods for lipid analysis. Chem Phys Lipids 21(4):389–402. doi: 10.1016/0009-3084(78)90048-8 CrossRefGoogle Scholar
  24. 24.
    Thomas MC, Mitchell TW, Harman DG, Deeley JM, Murphy RC, Blanksby SJ (2007) Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal Chem 79(13):5013–5022. doi: 10.1021/ac0702185 CrossRefGoogle Scholar
  25. 25.
    Xu Y, Brenna JT (2007) Atmospheric pressure covalent adduct chemical ionization tandem mass spectrometry for double bond localization in monoene- and diene-containing triacylglycerols. Anal Chem 79(6):2525–2536. doi: 10.1021/ac062055a CrossRefGoogle Scholar
  26. 26.
    Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ (2008) Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal Chem 80(1):303–311. doi: 10.1021/ac7017684 CrossRefGoogle Scholar
  27. 27.
    Hsu F-F, Turk J (2010) Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom 21(4):657–669. doi: 10.1016/j.jasms.2010.01.007 CrossRefGoogle Scholar
  28. 28.
    Brown SHJ, Mitchell TW, Blanksby SJ (2011) Analysis of unsaturated lipids by ozone-induced dissociation. Biochimt Biophys Acta-Mol Cell Biol Lipids 1811(11):807–817. doi: 10.1016/j.bbalip.2011.04.015 CrossRefGoogle Scholar
  29. 29.
    Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J (2011) Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal Chem 83(8):2978–2986. doi: 10.1021/ac1030682 CrossRefGoogle Scholar
  30. 30.
    Pham HT, Ly T, Trevitt AJ, Mitchell TW, Blanksby SJ (2012) Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal Chem 84(17):7525–7532. doi: 10.1021/ac301652a CrossRefGoogle Scholar
  31. 31.
    Moneti G, Pieraccini G, Dani F, Turillazzi S, Favretto D, Traldi P (1997) Ion-molecule reactions of ionic species from acetonitrile with unsaturated hydrocarbons for the identification of the double-bond position using an ion trap. J Mass Spectrom 32(12):1371–1373. doi: 10.1002/(sici)1096-9888(199712)32:12<1371::aid-jms588>;2-e CrossRefGoogle Scholar
  32. 32.
    Moneti G, Pieraccini G, Favretto D, Traldi P (1998) Acetonitrile in chemical ionization of monounsaturated hydrocarbons: a C-13 and H-2 labeling study. J Mass Spectrom 33(11):1148–1149. doi: 10.1002/(sici)1096-9888(1998110)33:11<1148::aid-jms707>;2-y CrossRefGoogle Scholar
  33. 33.
    Moneti G, Pieraccini G, Favretto D, Traldi P (1999) Reactions of ionic species from acetonitrile with long-chain saturated and unsaturated alcohols. J Mass Spectrom 34(12):1354–1360. doi: 10.1002/(sici)1096-9888(199912)34:12<1354::aid-jms894>;2-1 CrossRefGoogle Scholar
  34. 34.
    Oldham NJ, Svatoš A (1999) Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun Mass Spectrom 13(5):331–336. doi: 10.1002/(sici)1097-0231(19990315)13:5<331::aid-rcm487>;2-1 CrossRefGoogle Scholar
  35. 35.
    Van Pelt CK, Carpenter BK, Brenna JT (1999) Studies of structure and mechanism in acetonitrile chemical ionization tandem mass spectrometry of polyunsaturated fatty acid methyl esters. J Am Soc Mass Spectrom 10(12):1253–1262CrossRefGoogle Scholar
  36. 36.
    Van Pelt CK, Brenna JT (1999) Acetonitrile chemical ionization tandem mass spectrometry to locate double bonds in polyunsaturated fatty acid methyl esters. Anal Chem 71(10):1981–1989. doi: 10.1021/ac981387f CrossRefGoogle Scholar
  37. 37.
    Van Pelt CK, Huang MC, Tschanz CL, Brenna JT (1999) An octaene fatty acid, 4,7,10,13,16,19,22,25-octacosaoctaenoic acid (28: 8n−3), found in marine oils. J Lipid Res 40(8):1501–1505Google Scholar
  38. 38.
    Michaud AL, Diau GY, Abril R, Brenna JT (2002) Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal Biochem 307(2):348–360. doi: 10.1016/s0003-2697(02)00037-4 CrossRefGoogle Scholar
  39. 39.
    Michaud AL, Yurawecz MP, Delmonte P, Corl BA, Bauman DE, Brenna JT (2003) Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal Chem 75(18):4925–4930. doi: 10.1021/ac034221+ CrossRefGoogle Scholar
  40. 40.
    Michaud AL, Lawrence P, Adlof R, Brenna JT (2005) On the formation of conjugated linoleic acid diagnostic ions with acetonitrile chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 19(3):363–368. doi: 10.1002/rcm.1797 CrossRefGoogle Scholar
  41. 41.
    Lawrence P, Brenna JT (2006) Acetonitrile covalent adduct chemical ionization mass spectrometry for double bond localization in non-methylene-interrupted polyene fatty acid methyl esters. Anal Chem 78(4):1312–1317. doi: 10.1021/ac0516584 CrossRefGoogle Scholar
  42. 42.
    Gomez-Cortes P, Tyburczy C, Brenna JT, Juarez M, Angel de la Fuente M (2009) Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res 50(12):2412–2420. doi: 10.1194/jlr. M800662-JLR200 CrossRefGoogle Scholar
  43. 43.
    Alves SP, Tyburczy C, Lawrence P, Bessa RJB, Brenna JT (2011) Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters. Rapid Commun Mass Spectrom 25(14):1933–1941. doi: 10.1002/rcm.5065 CrossRefGoogle Scholar
  44. 44.
    Oldham NJ (1999) Ion/molecule reactions provide new evidence for the structure and origin of C3H4N (+) from acetonitrile chemical ionization plasma. Rapid Commun Mass Spectrom 13(16):1694–1698. doi: 10.1002/(sici)1097-0231(19990830)13:16<1694::aid-rcm702>;2-1 CrossRefGoogle Scholar
  45. 45.
    Vrkoslav V, Cvačka J (2012) Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1259:244–250. doi: 10.1016/j.chroma.2012.04.055 CrossRefGoogle Scholar
  46. 46.
    Šubčíková L, Hoskovec M, Vrkoslav V, Čmelíková T, Háková E, Míková R, Coufal P, Doležal A, Plavka R, Cvačka J (2015) Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 1378:8–18. doi: 10.1016/j.chroma.2014.11.075 CrossRefGoogle Scholar
  47. 47.
    Lísa M, Holčapek M, Boháč M (2009) Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry data. J Agric Food Chem 57(15):6888–6898. doi: 10.1021/jf901189u CrossRefGoogle Scholar
  48. 48.
    Liebisch G, Vizcaino JA, Koefeler H, Troetzmueller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54(6):1523–1530. doi: 10.1194/jlr.M033506 CrossRefGoogle Scholar
  49. 49.
    Rousseau D, Marangoni AG (2002) In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition, and biotechnology, 2nd edn. CRC, New YorkGoogle Scholar
  50. 50.
    Mottram HR, Evershed RP (1996) Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry. Tetrahedron Lett 37(47):8593–8596. doi: 10.1016/0040-4039(96)01964-8 CrossRefGoogle Scholar
  51. 51.
    Laakso P (2002) Mass spectrometry of triacylglycerols. Eur J Lipid Sci Technol 104(1):43–49. doi: 10.1002/1438-9312(200201)104:1<43::AID-EJLT43>3.0.CO;2-J CrossRefGoogle Scholar
  52. 52.
    Baiocchi C, Medana C, Dal Bello F, Giancotti V, Aigotti R, Gastaldi D (2015) Analysis of regioisomers of polyunsaturated triacylglycerols in marine matrices by HPLC/HRMS. Food Chem 166:551–560. doi: 10.1016/j.foodchem.2014.06.067 CrossRefGoogle Scholar
  53. 53.
    Kofroňová E, Cvačka J, Jiroš P, Sýkora D, Valterová I (2009) Analysis of insect triacylglycerols using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Eur J Lipid Sci Technol 111:519–525. doi: 10.1002/ejlt.200800228 CrossRefGoogle Scholar
  54. 54.
    Cvačka J, Krafková E, Jiroš P, Valterová I (2006) Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. Rapid Commun Mass Spectrom 20(23):3586–3594. doi: 10.1002/rcm.2770 CrossRefGoogle Scholar
  55. 55.
    Rissmann R, Groenink HWW, Weerheim AM, Hoath SB, Ponec M, Bouwstra JA (2006) New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol 126(8):1823–1833. doi: 10.1038/sj.jid.5700305 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eva Háková
    • 1
    • 2
  • Vladimír Vrkoslav
    • 2
  • Radka Míková
    • 1
    • 2
  • Karolina Schwarzová-Pecková
    • 1
  • Zuzana Bosáková
    • 1
  • Josef Cvačka
    • 2
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Organic Chemistry and Biochemistry v.v.iAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations