Analytical and Bioanalytical Chemistry

, Volume 407, Issue 10, pp 2791–2802 | Cite as

Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy

  • Roland Hass
  • Dorit Munzke
  • Salomé Vargas Ruiz
  • Johannes Tippmann
  • Oliver Reich
Research Paper


In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s′, respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

Graphical Abstract

Green Photon Density Wave created at the end of an optical fiber in beer mash, as new analytical tool for the in-line monitoring of (bio)chemical processes


Photon Density Wave spectroscopy Enzymatic milk coagulation Beer mashing Human donor blood Process analytical technology Light scattering 



We like to thank Anita Fuge for fruitful discussions and help with the milk experiments and Hans Scheuren for his help with the mashing experiments. We appreciate support by Hans Bäumler and Radostina Georgieva from the Institute for Transfusion Medicine, Charité Berlin. Furthermore, we like to acknowledge the financial support from the German Federal Ministry of Economics and Technology (grant no. 16IN0418) and the German Federal Ministry of Education and Research (grant no. 03Z2AN12).


The authors contributed differently to this paper: D.M. worked on the monitoring of the blood oxygenation, S.V.R. on enzymatic milk coagulation, and J.T. on beer mashing. R.H. and O.R. oversaw the experiments, and R.H. and D.M. wrote the manuscript.


  1. 1.
    Fishkin JB, Fantini S, van de Ven MJ, Gratton E (1996) Phys Rev E 53:2307–2319CrossRefGoogle Scholar
  2. 2.
    Sun Z, Huang Y, Sevick-Muraca EM (2002) Rev Sci Instrum 73:383–393CrossRefGoogle Scholar
  3. 3.
    Reich O, Loehmannsroeben HG, Schael F (2003) Phys Chem Chem Phys 5:5182–5187CrossRefGoogle Scholar
  4. 4.
    Bressel L, Hass R, Reich O (2013) JQRST 126:122–129Google Scholar
  5. 5.
    Cletus B, Kuennemeyer R, Martinsen P, McGlone VA (2010) J Biomed Opt 15:017003-1–6CrossRefGoogle Scholar
  6. 6.
    Tanguchi J, Murata H, Okamura Y (2010) Colloids Surf B 76:137–144CrossRefGoogle Scholar
  7. 7.
    Hass R, Reich O (2011) ChemPhysChem 12:2572–2575CrossRefGoogle Scholar
  8. 8.
    Hass R, Muenzberg M, Bressel L, Reich O (2013) Appl Opt 52:1423–1431CrossRefGoogle Scholar
  9. 9.
    Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New YorkGoogle Scholar
  10. 10.
    Richter SM, Shinde RR, Balgi GV, Sevick-Muraca EM (1998) Part Part Syst Charact 15:9–15CrossRefGoogle Scholar
  11. 11.
    Reich O, Bressel L, Hass R (2011) Proc SPIE 7753:77532J–77532J-4CrossRefGoogle Scholar
  12. 12.
    Toepel A (2007) Chemie und Physik der Milch, Naturstoff Rohstoff Lebensmittel. B. Behr’s Verlag, HamburgGoogle Scholar
  13. 13.
    Ion Titapiccolo G, Alexander M, Corredig M (2010) Dairy Sci Technol 90:623–639CrossRefGoogle Scholar
  14. 14.
    Ong L, Dagastine RR, Kentish SE, Gras SL (2010) J Food Sci 75:E135–E145CrossRefGoogle Scholar
  15. 15.
    Fox PF, McSweeney PLH (2006) Advanced dairy chemistry, volume 2, lipids. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  16. 16.
    Mitzscherling M (2004) Prozessanalyse des Maischens mittels statistischer Modellierung. Technical University Munich. DissertationGoogle Scholar
  17. 17.
    Montanari L, Floridi S, Marconi O, Tironzelli M, Fantozzi P (2005) Eur Food Res Technol 221:175–179CrossRefGoogle Scholar
  18. 18.
    Dickel T (2003) Untersuchungen zu enzymatischen Abbauprodukten beim Maischen im Hinblick auf die Entwicklung eines Prozessführungssystems. Technical University Munich. DissertationGoogle Scholar
  19. 19.
    Kuehbeck F, Back W, Krottenthaler M, Kurz T (2007) AIChE J 53:1373–1388CrossRefGoogle Scholar
  20. 20.
    Bamforth CW (2009) Beer, a quality perspective. Academic, BurlingtonGoogle Scholar
  21. 21.
    Tippmann J, Lauer J, Voigt J, Sommer K (2011) Brauindustrie 8:40–43Google Scholar
  22. 22.
    Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, Safonova LP, Gupta R, Michalos A, Mantulin W, Gratton E (2004) J Biomed Opt 9:221–229CrossRefGoogle Scholar
  23. 23.
    Fishkin JB, Coquoz O, Anderson ER, Brenner M, Tromberg BJ (1997) Appl Opt 36:10–20CrossRefGoogle Scholar
  24. 24.
    Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Neoplasia 2:26–40CrossRefGoogle Scholar
  25. 25.
    Meinke M, Müller G, Helfmann J, Friebel M (2007) J Biomed Opt 12:014024-1–014024-9CrossRefGoogle Scholar
  26. 26.
    Sultanova NG, Nikolov ID, Ivanov CD (2003) Opt Quant Electron 35:21–34CrossRefGoogle Scholar
  27. 27.
    Laporte MF, Martel R, Paquin P (1998) Int Dairy J 8:659–666CrossRefGoogle Scholar
  28. 28.
    Najera AI, de Renobales M, Barron LJR (2003) Food Chem 80:345–352CrossRefGoogle Scholar
  29. 29.
    O’Callaghan DJ, O’Donnell CP, Payne FA (2002) Int J Dairy Technol 55:65–74CrossRefGoogle Scholar
  30. 30.
    Vargas Ruiz S, Hass R, Reich O (2012) Int Dairy J 26:120–126CrossRefGoogle Scholar
  31. 31.
    Ustunol Z, Hicks CL, Payne FA (1991) J Food Sci 56:411–415CrossRefGoogle Scholar
  32. 32.
    Castillo M, Payne FA, Hicks CL, Lopez MB (2000) Int Dairy J 10:551–562CrossRefGoogle Scholar
  33. 33.
    McMahon DJ, Brown RJ (1990) Colloids Surf 44:263–279CrossRefGoogle Scholar
  34. 34.
    O’Callaghan DJ, O’Donnell CP, Payne FA (2000) J Food Eng 43:155–165CrossRefGoogle Scholar
  35. 35.
    Sandra S, Alexander M, Dalgleish DG (2007) J Colloid Interface Sci 308:364–373CrossRefGoogle Scholar
  36. 36.
    Roggan A, Friebel M, Dörschel K, Hahn A, Müller G (1999) J Biomed Opt 4:36–46CrossRefGoogle Scholar
  37. 37.
    Yang Y, Liu H, Li X, Chance B (1997) Opt Eng 36:1562–1569CrossRefGoogle Scholar
  38. 38.
    Pope RM, Fry ES (1997) Appl Opt 36:8710–8723CrossRefGoogle Scholar
  39. 39.
    Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT (1995) Anal Biochem 227:54–68CrossRefGoogle Scholar
  40. 40.
    Löffler G, Petrides PE, Heinrich PC (eds) (2007) Biochemie und Pathobiochemie. Springer Medizin Verlag, HeidelbergGoogle Scholar
  41. 41.
    Voet D, Voet JG (2011) Biochemistry. Wiley, HobokenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roland Hass
    • 1
  • Dorit Munzke
    • 1
  • Salomé Vargas Ruiz
    • 2
  • Johannes Tippmann
    • 3
  • Oliver Reich
    • 1
  1. 1.Institute of Chemistry, Physical Chemistry – innoFSPECUniversity of PotsdamPotsdam/GolmGermany
  2. 2.Institute of Chemistry, Applied Physical ChemistryTechnical University BerlinBerlinGermany
  3. 3.School of Life Sciences Weihenstephan, Chair of Brewing and Beverage TechnologyTechnical University MunichFreisingGermany

Personalised recommendations