Skip to main content
Log in

Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript


Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


1 t R :

1D retention time

2 t R :

2D retention time


Acyl carrier protein


Analysis of variance


Coenzyme A


Days after harvest


Fully ripe


Gas chromatography


Comprehensive 2D gas chromatography




Hierarchical cluster analysis




Latent variable


Mass spectrometry


Principal component


Principal component analysis

PLS regression:

Partial least squares regression


Partial least squares discriminant analysis


Quadrupole mass spectrometry


Solid phase microextraction


Variable identification (coefficient)


  1. Kebede BT, Grauwet T, Palmers S, Vervoort L, Carle R, Hendrickx M, van Loey A (2014) Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chem 153:340–352

    Article  CAS  Google Scholar 

  2. Schmarr H-G, Bernhardt J, Fischer U, Stephan A, Müller P, Durner D (2010) Two-dimensional gas chromatographic profiling as a tool for a rapid screening of the changes in volatile composition occurring due to microoxygenation of red wines. Anal Chim Acta 672(1–2):114–123

    Article  CAS  Google Scholar 

  3. Vaz-Freire LT, da Silva MDRG, Freitas AMC (2009) Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in olive oils produced by two different techniques in Portuguese olive varieties Galega Vulgar, Cobrançosa e Carrasquenha. Anal Chim Acta 633(2):263–270

    Article  CAS  Google Scholar 

  4. Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD (2011) Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A 1218(3):504–517

    Article  CAS  Google Scholar 

  5. Steingass CB, Grauwet T, Carle R (2014) Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). Food Chem 150:382–391

    Article  CAS  Google Scholar 

  6. Schmarr H-G, Bernhardt J (2010) Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A 1217(4):565–574

    Article  CAS  Google Scholar 

  7. Dall’Asta C, Cirlini M, Morini E, Galaverna G (2011) Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J Chromatogr A 1218(42):7557–7565

    Article  Google Scholar 

  8. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  9. Vervoort L, Grauwet T, Kebede BT, van der Plancken I, Timmermans R, Hendrickx M, van Loey A (2012) Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: a case-study on orange juice pasteurisation. Food Chem 134(4):2303–2312

    Article  CAS  Google Scholar 

  10. Gröger T, Welthagen W, Mitschke S, Schäffer M, Zimmermann R (2008) Application of comprehensive two-dimensional gas chromatography mass spectrometry and different types of data analysis for the investigation of cigarette particulate matter. J Sep Sci 31(19):3366–3374

    Article  Google Scholar 

  11. Pereira AC, Reis MS, Saraiva PM, Marques JC (2010) Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis. Anal Chim Acta 660(1–2):8–21

    Article  CAS  Google Scholar 

  12. Purcaro G, Cordero C, Liberto E, Bicchi C, Conte LS (2014) Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J Chromatogr A 1334:101–111

    Article  CAS  Google Scholar 

  13. Berrueta LA, Alonso-Salces RM, Héberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158(1–2):196–214

    Article  CAS  Google Scholar 

  14. Umano K, Hagi Y, Nakahara K, Shoji A, Shibamoto T (1992) Volatile constituents of green and ripened pineapple (Ananas comosus [L.] Merr.). J Agric Food Chem 40(4):599–603

    Article  CAS  Google Scholar 

  15. Elss S, Preston C, Hertzig C, Richling E, Schreier P (2003) Über das Aromaprofil der Ananas (Ananas comosus [L.] Merr.). Eine Nachernte-Studie. Flüssiges Obst 70:734–737

    CAS  Google Scholar 

  16. Steingass CB, Carle R, Schmarr H-G (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem. doi:10.1007/s00216-015-8474-z

  17. Montero-Calderón M, Rojas-Graü MA, Martín-Belloso O (2010) Pineapple (Ananas comosus [L.] Merril) flavor. In: Hui YH (ed) Handbook of fruit and vegetable flavors. Wiley, Hoboken, pp 391–414

    Chapter  Google Scholar 

  18. Nijssen LM, Visscher CA, Maarse H, Willemsens LC, Boelens MH (1996) Volatile compounds in food. Qualitative and quantitative data, 7th edn. TNO Nutrition and Food Research Institute, Zeist

    Google Scholar 

  19. Werkhoff P, Güntert M, Krammer G, Sommer H, Kaulen J (1998) Vacuum headspace method in aroma research: flavor chemistry of yellow passion fruits. J Agric Food Chem 46(3):1076–1093

    Article  CAS  Google Scholar 

  20. Ganss S, Kirsch F, Winterhalter P, Fischer U, Schmarr H-G (2011) Aroma changes due to second fermentation and glycosylated precursors in Chardonnay and Riesling sparkling wines. J Agric Food Chem 59(6):2524–2533

    Article  CAS  Google Scholar 

  21. Berger RG, Drawert F, Kollmannsberger H, Nitz S, Schraufstetter B (1985) Novel volatiles in pineapple fruit and their sensory properties. J Agric Food Chem 33(2):232–235

    Article  CAS  Google Scholar 

  22. Holland D, Larkov O, Bar-Ya’akov I, Bar E, Zax A, Brandeis E, Ravid U, Lewinsohn E (2005) Developmental and varietal differences in volatile ester formation and acetyl-CoA: alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. J Agric Food Chem 53(18):7198–7203

    Article  CAS  Google Scholar 

  23. Gerbling H, Gerhardt B (1988) Oxidative decarboxylation of branched-chain 2-oxo fatty acids by higher plant peroxisomes. Plant Physiol 88(1):13–15

    Article  CAS  Google Scholar 

  24. Matich A, Rowan D (2007) Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry. J Agric Food Chem 55(7):2727–2735

    Article  CAS  Google Scholar 

  25. Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61(4):1111–1123

    Article  CAS  Google Scholar 

  26. Tressl R, Engel KH, Albrecht W, Abdullah HB (1985) Analysis of chiral aroma components in trace amounts. In: Bills DD, Mussinan CJ (eds) Characterization and measurement of flavor compounds, vol 289, ACS symposium series. American Chemical Society, Washington, pp 54–60

    Chapter  Google Scholar 

  27. Tressl R, Albrecht W (1986) Biogenesis of aroma compounds through acyl pathways. In: Parliment T, Croteau R (eds) Biogeneration of aromas, vol 317, ACS symposium series. American Chemical Society, Washington, pp 114–133

    Chapter  Google Scholar 

  28. Salunkhe DK, Do JY, Maga JA (1976) Biogenesis of aroma constituents of fruits and vegetables. Crit Rev Food Sci Nutr 8(2):161–190

    Article  CAS  Google Scholar 

  29. Takeoka GR, Buttery RG, Teranishi R, Flath RA, Güntert M (1991) Identification of additional pineapple volatiles. J Agric Food Chem 39(10):1848–1851

    Article  CAS  Google Scholar 

  30. Tressl R, Heidlas J, Albrecht W, Engel K (1988) Biogenesis of chiral hydroxyacid esters. In: Schreier P (ed) Bioflavour ’87—analysis, biotechnology, biochemistry. Proceedings on the International Conference Würzburg, Federal Republic of Germany, September 29–30, 1987. Walter de Gruyter, Berlin, 221–236

  31. Engel K, Heidlas J, Albrecht W, Tressl R (1989) Biosynthesis of chiral flavor and aroma compounds in plants and microorganisms. In: Teranishi R, Buttery RG, Shahidi F (eds) Flavor chemistry—trends and developments, vol 388, ACS symposium series. American Chemical Society, Washington, pp 8–22

    Chapter  Google Scholar 

  32. Steingass CB, Langen J, Carle R, Schmarr H-G (2015) Authentication of pineapple (Ananas comosus [L.] Merr.) fruit maturity stages by quantitative analysis of γ- and δ-lactones using headspace solid-phase microextraction and chirospecific gas chromatography-selected ion monitoring mass spectrometry (HS-SPME-GC-MS-SIM). Food Chem 168:496–503

    Article  CAS  Google Scholar 

  33. Teai T, Claude-Lafontaine A, Schippa C, Cozzolino F (2001) Volatile compounds in fresh pulp of pineapple (Ananas comosus [L.] Merr.) from French Polynesia. J Essent Oil Res 13(5):314–318

    Article  CAS  Google Scholar 

  34. Gortner WA, Singleton VL (1965) Chemical and physical development of the pineapple fruit III. Nitrogenous and enzyme constituents. J Food Sci 30(1):24–29

    Article  CAS  Google Scholar 

  35. Defilippi BG, Manríquez D, Luengwilai K, González-Agüero M (2009) Chapter 1 aroma volatiles: biosynthesis and mechanisms of modulation during fruit ripening. In: Kader J, Delseny M (eds) Advances in botanical research, vol 50. Academic, San Diego, pp 1–37

    Chapter  Google Scholar 

  36. Ortiz-Serrano P, Gil JV (2010) Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. J Agric Food Chem 58(2):1106–1114

    Article  CAS  Google Scholar 

Download references


The authors would like to thank Mr. Frank Oberschilp (Peelco Ltd., Accra, Ghana) and Mr. Fritz Schumacher (Schumacher GmbH, Filderstadt-Bernhausen, Germany) for supplying the pineapple fruits. One of the authors (C.B.S.) gratefully acknowledges a Ph.D. scholarship by the Landesgraduiertenförderung Baden-Württemberg. We are grateful for the financial support by the Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten (MULEWF, Rheinland-Pfalz, Germany). C.B.S. gratefully acknowledges Dr. Herbert Steingass (Hohenheim University) for the fruitful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christof Björn Steingass.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steingass, C.B., Jutzi, M., Müller, J. et al. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407, 2609–2624 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: