Skip to main content

Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control

Abstract

Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a “green” dye and a “red” dye in a polymer matrix. These dyes present “Cy3” and “Cy5” analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Petricoin EF, Hackett JL, Lesko LJ, Puri RK, Gutman SI, Chumakov K, Woodcock J, Feigal DW, Zoon KC, Sistare FD (2002) Medical applications of microarray technologies: a regulatory science perspective. Nat Genet 32(Suppl):474–479

    Article  CAS  Google Scholar 

  2. Holloway AJ, van Laar RK, Tothill RW, Bowtell DDL (2002) Options available—from start to finish—for obtaining data from DNA microarrays II. Nat Genet 32(Suppl):481–489

    Article  CAS  Google Scholar 

  3. Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 1–18

  4. DeRose PC, Resch-Genger U, Wang L, Gaigalas AK, Kramer GW, Panne U (2008) Need for and metrological approaches towards standardization of fluorescence measurements from the view of National Metrology Institutes. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques, vol 5, Springer series on fluorescence. Springer, Berlin, pp 33–64

    Chapter  Google Scholar 

  5. Resch-Genger U (2008) Standardization and quality assurance in fluorescence measurements I techniques, vol 05, 1st edn, Springer series on fluorescence. Springer, Berlin

    Book  Google Scholar 

  6. Resch-Genger U (2008) Standardization and quality assurance in fluorescence measurements II bioanalytical and biomedical applications, vol 6, Firstth edn, Springer series on fluorescence. Springer, Berlin

    Google Scholar 

  7. Shi L, MAQC-Consortium (2010) The microarray quality control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28(8):827–838

    Article  CAS  Google Scholar 

  8. Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U (2009) Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal Chem 81(18):7807–7813

    Article  CAS  Google Scholar 

  9. Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7(3):200–210

    Article  CAS  Google Scholar 

  10. Shi L, Tong W, Goodsaid F, Frueh FW, Fang H, Han T, Fuscoe JC, Casciano DA (2004) QA/QC: challenges and pitfalls facing the microarray community and regulatory agencies. Expert Rev Mol Diagn 4(6):761–777

    Article  Google Scholar 

  11. Marshall A, Hodgson J (1998) DNA chips: an array of possibilities. Nat Biotechnol 16:27–31

    Article  CAS  Google Scholar 

  12. Lander ES (1999) Array of hope. Nat Genet (Suppl) 21:3–4

    Article  CAS  Google Scholar 

  13. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43(9):1749–1756

    CAS  Google Scholar 

  14. Beske O, Guo JJ, Li JR, Bassoni D, Bland K, Marciniak H, Zarowitz M, Temov V, Ravkin I, Goldbard S (2004) A novel encoded particle technology that enables simultaneous interrogation of multiple cell types. J Biomol Screen 9(3):173–185

    Article  CAS  Google Scholar 

  15. Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry Part A 69A(5):318–325

    Article  CAS  Google Scholar 

  16. Zhi Z, Morita Y, Hasan Q, Tamiya E (2003) Micromachining microcarrier-based biomolecular encoding for miniaturized and multiplexed immunoassay. Anal Chem 75(16):4125–4131

    Article  CAS  Google Scholar 

  17. DeRisi JL, Iyer VR (1999) Genomics and array technology. Curr Opin Oncol 11(1):76–79

    Article  CAS  Google Scholar 

  18. Schaferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385(3):500–517

    Article  Google Scholar 

  19. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  Google Scholar 

  20. Tezak Z, Ranamukhaarachchi D, Russek-Cohen E, Gutman SI (2006) FDA perspectives on potential microarray-based clinical diagnostics. Hum Genomics 2(4):236–243

    Article  CAS  Google Scholar 

  21. Zou S, He H-J, Zong Y, Shi L, Wang L (2008) DNA microarrays: applications, future trends, and the need for standardization. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II, vol 6, Springer series on fluorescence. Springer, Berlin, pp 215–237

    Chapter  Google Scholar 

  22. Nietfeld W (2008) Comparability of microarray experiments from instrument and sample site and approaches to standardization. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II, vol 6, Springer series on fluorescence. Springer, Berlin, pp 239–263

    Chapter  Google Scholar 

  23. Levitus M, Ranjit S (2011) Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q Rev Biophys 44(01):123–151

    Article  CAS  Google Scholar 

  24. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  Google Scholar 

  25. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3(3):142–155

    Article  CAS  Google Scholar 

  26. Pirrung MC (2002) How to make a DNA chip. Angew Chem Int Ed 41(8):1276–1289

    Article  CAS  Google Scholar 

  27. Cox WG, Beaudet MP, Agnew JY, Ruth JL (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331(2):243–254

    Article  Google Scholar 

  28. Pickett SC (2003) Understanding and evaluating fluorescent microarray imaging instruments. IVD Technol 9(4):45–49

    Google Scholar 

  29. Fare TL, Coffey EM, Dai H, He YD, Kessler DA, Kilian KA, Koch JE, LeProust E, Marton MJ, Meyer MR, Stoughton RB, Tokiwa GY, Wang Y (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75(17):4672–4675

    Article  CAS  Google Scholar 

  30. Shi L, Goodsaid F, Frueh F, Tong W (2008) Microarray technology: unresolved issues and future challenges from a regulatory perspective. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II, vol 6, Springer series on fluorescence. Springer, Berlin, pp 265–282

    Chapter  Google Scholar 

  31. Adelhelm K, Kaiser T, Tuchscherer J, Ermantraut E (2002) Fluoreszenzchip für die standardisierung von microarray-experimenten. Laborwelt III:35–37

    Google Scholar 

  32. CapitalBio Corporation Beijing C (2011) CapitalBio CalSlide-II. http://www.capitalbio.com. Accessed 26 July 2014

  33. Full Moon BioSystems I (2013) Scanner calibration slide. http://www.fullmoonbiosystems.com. Accessed 29 July 2014

  34. Probes M (2014) FocalCheck™ fluorescence microscope. http://www.lifetechnologies.com. Accessed 29 July 2014

  35. Spherotech I (2014) SPHERO™ fluorescent particle slides. http://www.spherotech.com. Accessed 29 July 2014

  36. Ted Pella I (2014) Fluorescence reference slides. http://www.tedpella.com. Accessed 29 July 2014

  37. Bio-One G (2014) CheckScanner instructions for use. Accessed 3 Dec 2014

  38. Bio-One G (2014) PapilloCheck®. https://www.gbo.com/. Accessed 29 July 2014

  39. Würth C, Pauli J, Lochmann C, Spieles M, Resch-Genger U (2011) Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal Chem 84(3):1345–1352

    Article  Google Scholar 

  40. Dalstein V, Merlin S, Bali C, Saunier M, Dachez R, Ronsin C (2009) Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus. J Virol Methods 156(1–2):77–83

    Article  CAS  Google Scholar 

  41. Pfeifer D, Hoffmann K, Hoffmann A, Monte C, Resch-Genger U (2006) The calibration kit spectral fluorescence standards—a simple and certified tool for the standardization of the spectral characteristics of fluorescence instruments. J Fluoresc 16(4):581–587

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Federal Ministry of Economics and Technology (grant BMWI-23/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Resch-Genger.

Additional information

Published in the topical collection Reference Materials for Chemical Analysis with guest editors Hendrik Emons and Stephen A. Wise.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunner, C., Hoffmann, K., Thiele, T. et al. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. Anal Bioanal Chem 407, 3181–3191 (2015). https://doi.org/10.1007/s00216-014-8450-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8450-z

Keywords

  • New reference material
  • Microarray
  • Fluorescence
  • Standard
  • Calibration slide