Analytical and Bioanalytical Chemistry

, Volume 407, Issue 7, pp 1901–1912 | Cite as

Cross-platform metabolic profiling: application to the aquatic model organism Lymnaea stagnalis

  • Sara TufiEmail author
  • Marja H. Lamoree
  • Jacob De Boer
  • Pim E. G. Leonards
Research Paper


The freshwater pond snail Lymnaea stagnalis is used in several studies on molecular and behavioral neurobiology and ecotoxicology showing its successful application as a model organism. In the present study, a cross-platform metabolomic approach has been evaluated to characterize the organ molecular phenotypes of L. stagnalis central nervous system (CNS), digestive gland (DG), and albumen gland (AG). Two types of tissue disruption methods were evaluated of which beads beating was the preferred method. To obtain a broad picture of the hydrophilic and lipophilic metabolome, two complementary analytical platforms have been employed: liquid chromatography (LC) and gas chromatography (GC) coupled to high-resolution mass spectrometry. Furthermore, to increase the power to separate small polar metabolites, hydrophilic interaction liquid chromatography (HILIC) was applied. The analytical platform performances have been evaluated based on the metabolome coverage, number of molecular features, reproducibility, and multivariate data analysis (MVDA) clustering. This multiplatform approach is a starting point for future global metabolic profiling applications on L. stagnalis.


Metabolomics Lymnaea stagnalis Cross-platform LC-MS GC-MS HILIC 



This study was carried out within the Marie Curie Research Training Network EDA-EMERGE ( supported by the EU (MRTN-CT-2012-290100).

Supplementary material

216_2014_8431_MOESM1_ESM.pdf (570 kb)
ESM 1 (PDF 570 kb)


  1. 1.
    Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307. doi: 10.1016/j.mib.2004.04.012 CrossRefGoogle Scholar
  2. 2.
    Goodacre R, Vaidyanathan S, Dunn WB et al (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252. doi: 10.1016/j.tibtech.2004.03.007 CrossRefGoogle Scholar
  3. 3.
    Lindon JC, Holmes E, Bollard ME et al (2004) Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomark Biochem Indic Expo Response Susceptibility Chem 9:1–31. doi: 10.1080/13547500410001668379 Google Scholar
  4. 4.
    Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836. doi: 10.1016/S0031-9422(02)00708-2 CrossRefGoogle Scholar
  5. 5.
    Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6:513–525. doi: 10.1021/pr060522z CrossRefGoogle Scholar
  6. 6.
    Antignac J-P, Courant F, Pinel G et al (2011) Mass spectrometry-based metabolomics applied to the chemical safety of food. TrAC Trends Anal Chem 30:292–301. doi: 10.1016/j.trac.2010.11.003 CrossRefGoogle Scholar
  7. 7.
    Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21. doi: 10.1007/s11306-008-0152-0 CrossRefGoogle Scholar
  8. 8.
    Rittschof D, McClellan-Green P (2005) Molluscs as multidisciplinary models in environment toxicology. Mar Pollut Bull 50:369–373. doi: 10.1016/j.marpolbul.2005.02.008 CrossRefGoogle Scholar
  9. 9.
    Das S, Khangarot BS (2011) Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaea luteola L. J Hazard Mater 185:295–305. doi: 10.1016/j.jhazmat.2010.09.033 CrossRefGoogle Scholar
  10. 10.
    Desouky MMA (2006) Tissue distribution and subcellular localization of trace metals in the pond snail Lymnaea stagnalis with special reference to the role of lysosomal granules in metal sequestration. Aquat Toxicol 77:143–152. doi: 10.1016/j.aquatox.2005.11.009 CrossRefGoogle Scholar
  11. 11.
    Czech P, Weber K, Dietrich D (2001) Effects of endocrine modulating substances on reproduction in the hermaphroditic snail Lymnaea stagnalis L. Aquat Toxicol 53:103–114. doi: 10.1016/S0166-445X(00)00169-7 CrossRefGoogle Scholar
  12. 12.
    Clarac F, Pearlstein E (2007) Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res Rev 54:113–161. doi: 10.1016/j.brainresrev.2006.12.007 CrossRefGoogle Scholar
  13. 13.
    Patel BA, Arundell M, Parker KH et al (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818:269–276. doi: 10.1016/j.jchromb.2005.01.008 CrossRefGoogle Scholar
  14. 14.
    Bouétard A, Noirot C, Besnard A-L et al (2012) Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. Ecotoxicology 21:2222–2234. doi: 10.1007/s10646-012-0977-1 CrossRefGoogle Scholar
  15. 15.
    Sadamoto H, Takahashi H, Okada T et al (2012) De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS ONE 7:e42546. doi: 10.1371/journal.pone.0042546 CrossRefGoogle Scholar
  16. 16.
    Feng Z-P, Zhang Z, van Kesteren R et al (2009) Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC Genomics 10:451. doi: 10.1186/1471-2164-10-451 CrossRefGoogle Scholar
  17. 17.
    Silverman-Gavrila LB, Lu TZ, Prashad RC et al (2009) Neural phosphoproteomics of a chronic hypoxia model—Lymnaea stagnalis. Neuroscience 161:621–634. doi: 10.1016/j.neuroscience.2009.03.043 CrossRefGoogle Scholar
  18. 18.
    Silverman-Gavrila LB, Senzel AG, Charlton MP, Feng Z-P (2011) Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 186:94–109. doi: 10.1016/j.neuroscience.2011.04.027 CrossRefGoogle Scholar
  19. 19.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. doi: 10.1023/A:1013713905833 CrossRefGoogle Scholar
  20. 20.
    Villas-Bôas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23:385–386. doi: 10.1016/j.tibtech.2005.05.009 CrossRefGoogle Scholar
  21. 21.
    Creek DJ, Jankevics A, Breitling R et al (2011) Toward global metabolomics analysis with hydrophilic interaction liquid chromatography–mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83:8703–8710. doi: 10.1021/ac2021823 CrossRefGoogle Scholar
  22. 22.
    Phua LC, Koh PK, Cheah PY et al (2013) Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. J Chromatogr B 937:103–113. doi: 10.1016/j.jchromb.2013.08.025 CrossRefGoogle Scholar
  23. 23.
    Loftus NJ, Lai L, Wilkinson RW et al (2013) Global metabolite profiling of human colorectal cancer xenografts in mice using HPLC–MS/MS. J Proteome Res 12:2980–2986. doi: 10.1021/pr400260h CrossRefGoogle Scholar
  24. 24.
    Lisacek F (2007) Metabolome analysis: an introduction. By Silas G. Villas-Bôas, Ute Roessner, Michael A. E. Hansen, Jørn Smedsgaard, Jens Nielsen. Proteomics 7:3634–3634. doi:10.1002/pmic.200790078Google Scholar
  25. 25.
    Calingacion MN, Boualaphanh C, Daygon VD et al (2012) A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics 8:771–783. doi: 10.1007/s11306-011-0374-4 CrossRefGoogle Scholar
  26. 26.
    Ruiz-Aracama A, Peijnenburg A, Kleinjans J et al (2011) An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 12:251. doi: 10.1186/1471-2164-12-251 CrossRefGoogle Scholar
  27. 27.
    Zonneveld C, Kooijman SALM (1989) Application of a dynamic energy budget model to Lymnaea stagnalis (L.). Funct Ecol 3:269–278. doi: 10.2307/2389365 CrossRefGoogle Scholar
  28. 28.
    Aleksic M, Feng Z-P (2012) Identification of the role of C/EBP in neurite regeneration following microarray analysis of a L. stagnalis CNS injury model. BMC Neurosci 13:2. doi: 10.1186/1471-2202-13-2 CrossRefGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  30. 30.
    Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. doi: 10.1080/01621459.1963.10500845 CrossRefGoogle Scholar
  31. 31.
    Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLS and OPLS® models. J Chemom 22:594–600. doi: 10.1002/cem.1187 CrossRefGoogle Scholar
  32. 32.
    Pingret D, Fabiano-Tixier A-S, Chemat F (2013) Degradation during application of ultrasound in food processing: a review. Food Control 31:593–606. doi: 10.1016/j.foodcont.2012.11.039 CrossRefGoogle Scholar
  33. 33.
    Eh AL-S, Teoh S-G (2012) Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason Sonochem 19:151–159. doi: 10.1016/j.ultsonch.2011.05.019 CrossRefGoogle Scholar
  34. 34.
    Sun Y, Ma G, Ye X et al (2010) Stability of all-trans-β-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrason Sonochem 17:654–661. doi: 10.1016/j.ultsonch.2009.12.005 CrossRefGoogle Scholar
  35. 35.
    Geier FM, Want EJ, Leroi AM, Bundy JG (2011) Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Anal Chem 83:3730–3736. doi: 10.1021/ac2001109 CrossRefGoogle Scholar
  36. 36.
    Saric J, Want EJ, Duthaler U et al (2012) Systematic evaluation of extraction methods for multiplatform-based metabotyping: application to the Fasciola hepatica metabolome. Anal Chem 84:6963–6972. doi: 10.1021/ac300586m CrossRefGoogle Scholar
  37. 37.
    Ikegami T, Horie K, Saad N et al (2008) Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 391:2533–2542. doi: 10.1007/s00216-008-2060-6 CrossRefGoogle Scholar
  38. 38.
    Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J Chromatogr A 1074:71–80. doi: 10.1016/j.chroma.2005.03.058 CrossRefGoogle Scholar
  39. 39.
    Cubbon S, Antonio C, Wilson J, Thomas-Oates J (2010) Metabolomic applications of HILIC–LC–MS. Mass Spectrom Rev 29:671–684. doi: 10.1002/mas.20252 CrossRefGoogle Scholar
  40. 40.
    Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247. doi: 10.1007/s00216-011-5308-5 CrossRefGoogle Scholar
  41. 41.
    Dejaegher B, Vander Heyden Y (2010) HILIC methods in pharmaceutical analysis. J Sep Sci 33:698–715. doi: 10.1002/jssc.200900742 CrossRefGoogle Scholar
  42. 42.
    Dallet P, Labat L, Kummer E, Dubost JP (2000) Determination of urea, allantoin and lysine pyroglutamate in cosmetic samples by hydrophilic interaction chromatography. J Chromatogr B Biomed Sci App 742:447–452. doi: 10.1016/S0378-4347(00)00196-1 CrossRefGoogle Scholar
  43. 43.
    Yang Y, Boysen RI, Hearn MTW (2009) Hydrophilic interaction chromatography coupled to electrospray mass spectrometry for the separation of peptides and protein digests. J Chromatogr A 1216:5518–5524. doi: 10.1016/j.chroma.2009.05.085 CrossRefGoogle Scholar
  44. 44.
    Matthews SB, Santra M, Mensack MM et al (2012) Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7:e44179. doi: 10.1371/journal.pone.0044179 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sara Tufi
    • 1
    Email author
  • Marja H. Lamoree
    • 1
  • Jacob De Boer
    • 1
  • Pim E. G. Leonards
    • 1
  1. 1.Institute for Environmental Studies (IVM)VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations