Analytical and Bioanalytical Chemistry

, Volume 407, Issue 17, pp 5053–5064 | Cite as

Combining liquid chromatography with ozone-induced dissociation for the separation and identification of phosphatidylcholine double bond isomers

  • Rachel L. Kozlowski
  • J. Larry Campbell
  • Todd W. MitchellEmail author
  • Stephen J. BlanksbyEmail author
Research Paper
Part of the following topical collections:
  1. Lipidomics


Revealing the inherent molecular diversity of lipid biology requires advanced analytical technologies. Distinguishing phospholipids that differ in the position(s) of carbon-carbon double bonds within their acyl chains presents a particular challenge because of their similar chromatographic and mass spectral behaviours. Here—for the first time—we combine reversed-phase liquid chromatography for separation of isomeric phospholipids with on-line mass spectral analysis by ozone-induced dissociation (OzID) for unambiguous double bond position assignment. The customised tandem linear ion-trap mass spectrometer used in our study is capable of acquiring OzID scans on a chromatographic timescale. Resolving the contributions of isomeric lipids that are indistinguishable based on conventional mass spectral analysis is achieved using the combination of liquid chromatography and OzID. Application of this method to the analysis of simple (egg yolk) and more complex (sheep brain) extracts reveals significant populations of the phosphatidylcholine PC 16:0_18:1(n−7) alongside the expected PC 16:0_18:1(n−9) isomer.

Graphical Abstract

Separation and identification double bond positional isomers of phosphatidylcholines using LC-OzID


Mass spectrometry Liquid chromatography Phospholipids Double bond isomers Ozone-induced dissociation Collision-induced dissociation 



Collision-induced dissociation


Electrospray ionisation


High-performance liquid chromatography


Liquid chromatography


Mass spectrometry


Tandem mass spectrometry


Mass-to-charge ratio


Ozone-induced dissociation




Total ion chromatogram


Extracted ion chromatogram



RLK is grateful for support through an Australian Postgraduate Award (International) from the University of Wollongong. TWM is an Australian Research Council Future Fellow (FT110100249). SJB and TWM acknowledge project funding from the Australian Research Council through the Discovery (DP120102922) and support from AB SCIEX through the ARC Linkage Program (LP110200648). RLK acknowledges the technical support of Dr Chris Hodgkins (AB SCIEX, Australia) and Dr Alan Maccarone (UOW) and also thanks the latter for provision of Fig. S1.

Author contributions

TWM, JLC and SJB conceived the project. RLK conducted all experiments and performed the data analysis. JLC provided essential input into the experimental configuration including hardware and software aspects. RLK and SJB wrote the main manuscript text and prepared figures. All authors critically reviewed the manuscript and electronic supplementary materials.

Supplementary material

216_2014_8430_MOESM1_ESM.pdf (4.7 mb)
ESM 1 (PDF 4.66 mb)


  1. 1.
    Minakami R, Maehara Y, Kamakura S, Kumano O, Miyano K, Sumimoto H (2010) Membrane phospholipid metabolism during phagocytosis in human neutrophils. Genes Cells 15(5):409–424CrossRefGoogle Scholar
  2. 2.
    Hughes PJ, Michell RH (1993) Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol 3(3):383–400CrossRefGoogle Scholar
  3. 3.
    Bo T, Pawliszyn J (2006) Protein thermal stability and phospholipid–protein interaction investigated by capillary isoelectric focusing with whole column imaging detection. J Sep Sci 29(7):1018–1025CrossRefGoogle Scholar
  4. 4.
    Berkowitz ML, Vacha R (2012) Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 45(1):74–82CrossRefGoogle Scholar
  5. 5.
    Schroit AJ, Gallily R (1979) Macrophage fatty acid composition and phagocytosis: effect of unsaturation on cellular phagocytic activity. Immunology 36(2):199–205Google Scholar
  6. 6.
    de Jonge HW, Dekkers DH, Bastiaanse EM, Bezstarosti K, van der Laarse A, Lamers JM (1996) Eicosapentaenoic acid incorporation in membrane phospholipids modulates receptor-mediated phospholipase C and membrane fluidity in rat ventricular myocytes in culture. J Mol Cell Cardiol 28(5):1097–1108CrossRefGoogle Scholar
  7. 7.
    Zeng Y, Han X, Gross RW (1998) Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux. Biochemistry 37(8):2346–2355CrossRefGoogle Scholar
  8. 8.
    Brouwers JF (2011) Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta 1811(11):763–775CrossRefGoogle Scholar
  9. 9.
    Sandra K, Sandra P (2013) Lipidomics from an analytical perspective. Curr Opin Chem Biol 17(5):847–853CrossRefGoogle Scholar
  10. 10.
    Nikolova-Damyanova B (2009) Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions. J Chrom A 1216(10):1815–1824CrossRefGoogle Scholar
  11. 11.
    Dobson G, Christie WW, Nikolova-Damyanova B (1995) Silver ion chromatography of lipids and fatty acids. J Chrom B 671(1–2):197–222CrossRefGoogle Scholar
  12. 12.
    Marmer WN, Foglia TA, Vail PD (1984) HPLC of plasmalogen-containing phosphatidylcholine under reverse-phase or argentation conditions. Lipids 19(5):353–358CrossRefGoogle Scholar
  13. 13.
    Beckman BS, Mallia C, Clejan S (1996) Molecular species of phospholipids in a murine stem-cell line responsive to erythropoietin. Biochem J 314(3):861–867Google Scholar
  14. 14.
    Chen S, Belikova NA, Subbaiah PV (2012) Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry. Anal Chim Acta 735:76–89CrossRefGoogle Scholar
  15. 15.
    Retra K, Bleijerveld OB, van Gestel RA, Tielens AG, van Hellemond JJ, Brouwers JF (2008) A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Commun Mass Spectrom 22(12):1853–1862CrossRefGoogle Scholar
  16. 16.
    Zahradnickova H, Tomcala A, Berkova P, Schneedorferova I, Okrouhlik J, Simek P, Hodkova M (2014) Cost effective, robust, and reliable coupled separation techniques for the identification and quantification of phospholipids in complex biological matrices: application to insects. J Sep Sci 37(15):2062–2068CrossRefGoogle Scholar
  17. 17.
    Lin J-T, McKeon TA, Woodruff CL, Singleton JA (1998) Separation of synthetic phosphatidylcholine molecular species by high-performance liquid chromatography on a C8 column. J Chrom A 824(2):169–174CrossRefGoogle Scholar
  18. 18.
    Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res 55(8):1772–1783CrossRefGoogle Scholar
  19. 19.
    Brouwers JF, Versluis C, van Golde LM, Tielens AG (1998) 5-Octadecenoic acid: evidence for a novel type of fatty acid modification in schistosomes. Biochem J 334(2):315–319Google Scholar
  20. 20.
    Mitchell TW, Pham H, Thomas MC, Blanksby SJ (2009) Identification of double bond position in lipids: from GC to OzID. J Chrom B 877(26):2722–2735CrossRefGoogle Scholar
  21. 21.
    Sun C, Zhao YY, Curtis JM (2013) The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry. Anal Chim Acta 762:68–75CrossRefGoogle Scholar
  22. 22.
    Sun C, Zhao YY, Curtis JM (2014) Elucidation of phosphatidylcholine isomers using two dimensional liquid chromatography coupled in-line with ozonolysis mass spectrometry. J Chrom A 1351:37–45CrossRefGoogle Scholar
  23. 23.
    Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ (2008) Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal Chem 80(1):303–311CrossRefGoogle Scholar
  24. 24.
    Poad BL, Pham HT, Thomas MC, Nealon JR, Campbell JL, Mitchell TW, Blanksby SJ (2010) Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J Am Soc Mass Spectrom 21(12):1989–1999CrossRefGoogle Scholar
  25. 25.
    Brown SH, Mitchell TW, Blanksby SJ (2011) Analysis of unsaturated lipids by ozone-induced dissociation. Biochim Biophys Acta 1811(11):807–817CrossRefGoogle Scholar
  26. 26.
    Deeley JM, Thomas MC, Truscott RJ, Mitchell TW, Blanksby SJ (2009) Identification of abundant alkyl ether glycerophospholipids in the human lens by tandem mass spectrometry techniques. Anal Chem 81(5):1920–1930CrossRefGoogle Scholar
  27. 27.
    Chin JS, Ellis SR, Pham HT, Blanksby SJ, Mori K, Koh QL, Etges WJ, Yew JY (2014) Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior. eLife 3:e01751CrossRefGoogle Scholar
  28. 28.
    Ståhlman M, Pham H, Adiels M, Mitchell T, Blanksby SJ, Fagerberg B, Ekroos K, Borén J (2012) Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes. Diabetologia 55(4):1156–1166CrossRefGoogle Scholar
  29. 29.
    Han X, Yang K, Gross RW (2012) Multi‐dimensional mass spectrometry‐based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Sprectrom Rev 31(1):134–178CrossRefGoogle Scholar
  30. 30.
    Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  31. 31.
    Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, Blanksby SJ, Truscott RJ (2008) Human lens lipids differ markedly from those of commonly used experimental animals. Biochim Biophys Acta 1781(6–7):288–298CrossRefGoogle Scholar
  32. 32.
    Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14CrossRefGoogle Scholar
  33. 33.
    Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJ (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54(6):1523–1530CrossRefGoogle Scholar
  34. 34.
    The nomenclature of lipids (Recommendations 1976) IUPAC-IUB Commission on Biochemical Nomenclature (1978). Eur J Biochem 171 (1):21–35Google Scholar
  35. 35.
    Pham HT, Maccarone AT, Campbell JL, Mitchell TW, Blanksby SJ (2013) Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions. J Am Soc Mass Spectrom 24(2):286–296CrossRefGoogle Scholar
  36. 36.
    Hsu FF, Turk J (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14(4):352–363CrossRefGoogle Scholar
  37. 37.
    Pham HT, Maccarone A, Thomas MC, Campbell JL, Mitchell TW, Blanksby S (2014) Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards “top-down” lipidomics. Analyst 139(1):204–214CrossRefGoogle Scholar
  38. 38.
    Mitchell TW, Brown SH, Blanksby SJ (2012) Structural Lipidomics. In: Ekroos K (ed) Lipidomics: technologies and applications. Wiley-VCH, WeinheimGoogle Scholar
  39. 39.
    Maccarone AT, Duldig J, Mitchell TW, Blanksby SJ, Duchoslav E, Campbell JL (2014) Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. J Lipid Res 55(8):1668–1677CrossRefGoogle Scholar
  40. 40.
    Kozlowski RL, Mitchell TW, Blanksby SJ (2015) Separation and identification of phosphatidylcholine isomers by combining liquid chromatography with a fusion of collision- and ozone-induced dissociation. Eur J Mass Spectrom in pressGoogle Scholar
  41. 41.
    Le Grandois J, Marchioni E, Zhao M, Giuffrida F, Ennahar S, Bindler F (2009) Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J Agri Food Chem 57(14):6014–6020CrossRefGoogle Scholar
  42. 42.
    Nealon JR, Blanksby SJ, Mitchell TW, Else PL (2008) Systematic differences in membrane acyl composition associated with varying body mass in mammals occur in all phospholipid classes: an analysis of kidney and brain. J Exp Biol 211(19):3195–3204CrossRefGoogle Scholar
  43. 43.
    Thomas MC, Mitchell TW, Blanksby SJ (2009) OnLine ozonolysis methods for the determination of double bond position in unsaturated lipids. Method Mol Biol 579:413–441CrossRefGoogle Scholar
  44. 44.
    Bird SS, Marur VR, Stavrovskaya IG, Kristal BS (2012) Separation of cis–trans phospholipid isomers using reversed phase LC with high resolution MS detection. Anal Chem 84(13):5509–5517CrossRefGoogle Scholar
  45. 45.
    Nakanishi H, Iida Y, Shimizu T, Taguchi R (2010) Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS. J Biochem 147(2):245–256CrossRefGoogle Scholar
  46. 46.
    Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11):935–945CrossRefGoogle Scholar
  47. 47.
    Lintonen TP, Baker PR, Suoniemi M, Ubhi BK, Koistinen KM, Duchoslav E, Campbell JL, Ekroos K (2014) Differential mobility spectrometry-driven shotgun lipidomics. Anal Chem 86(19):9662–9669CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of ChemistryUniversity of WollongongWollongongAustralia
  2. 2.Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongAustralia
  3. 3.AB Sciex ConcordOntarioCanada
  4. 4.School of MedicineUniversity of WollongongWollongongAustralia
  5. 5.Central Analytical Research FacilityQueensland University of TechnologyQueenslandAustralia

Personalised recommendations