Skip to main content
Log in

Study of the distribution of actinides in human tissues using synchrotron radiation micro X-ray fluorescence spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study aims at evaluating the capabilities of synchrotron radiation micro X-ray fluorescence spectrometry (SR micro-XRF) for qualitative and semi-quantitative elemental mapping of the distribution of actinides in human tissues originating from individuals with documented occupational exposure. The investigated lymph node tissues were provided by the United States Transuranium and Uranium Registries (USTUR) and were analyzed following appropriate sample pre-treatment. Semi-quantitative results were obtained via calibration by external standards and demonstrated that the uranium concentration level in the detected actinide hot spots reaches more than 100 μg/g. For the plutonium hot spots, concentration levels up to 31 μg/g were found. As illustrated by this case study on these unique samples, SR micro-XRF has a high potential for this type of elemental bio-imaging owing to its high sensitivity, high spatial resolution, and non-destructive character.

SR micro-XRF study of the distribution of actinitides in human tissues. Left Location of the U-contaminated tissue sample in the human body. Middle U distribution derived from the high resolution SR micro-XRF scan on the tissue sample, indication of five U hot spots. Right Detail of the point measurement spectrum of U hot spot 3, intense U-Lα fluorescence peak located at 13.6 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kalmykov SN, Denecke MA (2011) Actinide nanoparticle research, DOI 10.1007/978-3-642-11432-8_12, Springer-Verlag Berlin Heidelberg, New York

  2. Smith JT, Beresford NA (2005) Chernobyl—catastrophe and consequences. Springer-Verlag Berlin Heidelberg, New York, ISBN 3-540-23866-2

    Google Scholar 

  3. United States Transuranium & Uranium Registries (USTUR). Washington State University College of Pharmacy. http://www.ustur.wsu.edu. Accessed 28 Oct 2014

  4. Williams DB, Carter CB (1996) Transmission electron microscopy. A textbook for materials science. Springer, New York

    Book  Google Scholar 

  5. Moore KT (2010) X-ray and electron microscopy of actinide materials. Micron 41:336–358

    Article  CAS  Google Scholar 

  6. Becker JS (2003) Mass spectrometry of long-lived radionuclides. Spectrochim Acta B At Spectrosc 58:1757–1784

    Article  Google Scholar 

  7. Boye P, Feldkamp JM, Patommel J, Schwab A, Stephan S, Hoppe R, Schroer CG, Burghammer M, Riekel C, van der Hart A, Küchler M (2009) Nanofocusing refractive X-ray lenses: fabrication and modeling. J Phys Conf Ser 186:012063

    Article  Google Scholar 

  8. Beckhoff B, Kanngiesser B, Langhoff N, Wedell R, Wolff H (2005) Handbook of practical X-ray fluorescence analysis. Springer Berlin Heidelberg, New York

    Google Scholar 

  9. Vincze L, Vekemans B, Brenker FE, Falkenberg F, Rickers K, Somogyi A, Kersten M, Adams F (2004) Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal Chem 76:6786–6791

    Article  CAS  Google Scholar 

  10. Kanngiesser B, Malzer W, Reiche I (2003) A new 3D micro X-ray fluorescence analysis set-up—first archaeometric applications. Nucl Instrum Methods Phys Res B 211:259–264

    Article  CAS  Google Scholar 

  11. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    Article  CAS  Google Scholar 

  12. Rindby A, Janssens K, Osan J (2003) Reconstruction of the three-dimensional distribution of elements in fly-ash particles by micro-XRF spectroscopy. X-Ray Spectrom 32:248–257

    Article  CAS  Google Scholar 

  13. Lind OC, Salbu B, Janssens K, Proost K, García-León M, García-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376:294–305

    Article  CAS  Google Scholar 

  14. Lind OC, Salbu B, Skipperud L, Janssens K, Jaroszewicz J, De Nolf W (2009) Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. J Environ Radioact 100:301–307

    Article  CAS  Google Scholar 

  15. Begg BD, Hess NJ, Weber WJ, Conradson SD, Schweiger MJ, Ewing RC (2000) XAS and XRD study of annealed 238Pu- and 239Pu-substituted zircons (Zr0.92Pu0.08SiO4). J Nuc Mat 278:212–224

    Article  CAS  Google Scholar 

  16. Salbu B, Lind OC, Skipperud L (2004) Radionuclide speciation and its relevance in environmental impact assessments. J Environ Radioactivity 74:233–242

    Article  CAS  Google Scholar 

  17. Conradson SD (2000) XAFS—a technique to probe local structure. Los Alamos Sci 26:422–435

    Google Scholar 

  18. Hare D, Tolmachev S, James A, Bishop D, Austin C, Fryer F, Doble P (2010) Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers. Anal Chem 82:3176–3182

    Article  CAS  Google Scholar 

  19. Avtandilashvili M, Brey R, James AC (2012) Maximum likelihood analysis of bioassay data from long-term follow-up of two refractory PuO2 inhalation cases. Health Phys 103:70–79

    Article  CAS  Google Scholar 

  20. Vekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom 23:278–285

    Article  CAS  Google Scholar 

  21. Interactive Data Language, Exelis Visual Information Solutions, Boulder, Colorado. http://www.exelisvis.com. Accessed 28 Oct 2014

  22. Falkenberg G, Clauss O, Swiderski A, Tschentscher T (2001) Upgrade of the x-ray fluorescence beamline at HASYLAB/DESY. X-Ray Spectrom 30:170–173

    Article  CAS  Google Scholar 

  23. Kolev NI (2009) Multiphase flow dynamics 4: nuclear thermal hydraulics. Springer-Verlag Berlin Heidelberg, New York, ISBN: 978-3-540-92917-8

    Book  Google Scholar 

  24. Glazoff VM, Tokuhiro A, Rashkeev SN, Sabharwall P (2014) Oxidation and hydrogen uptake in zirconium, zircaloy-2 and zircaloy-4: computational thermodynamics and ab initio calculations. J Nuc Mat 444:65–75

    Article  CAS  Google Scholar 

  25. Schoonjans T, Brunetti A, Golosio B, Sanchez del Rio M, Armando Solé V, Ferrero C, Vincze L (2011) The xraylib library for X-ray–matter interactions. Recent developments. Spectrochim Acta Part B 66:776–784

    Article  CAS  Google Scholar 

  26. Laforce B, Schmitz S, Vekemans B, Rudloff J, Garrevoet J, Tucoulou R, Brenker FE, Martínez-Criado G, Vincze L (2014) Nanoscopic X-ray fluorescence imaging of meteoritic particles and diamond inclusions. Anal Chem 86:12369–12374

    Article  CAS  Google Scholar 

  27. Casadio F, Rose V (2013) High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl Phys A 111:1–8

    Article  CAS  Google Scholar 

  28. Brenker F et al (2014) Stardust interstellar preliminary examination V: XRF analyses of interstellar dust candidates at ESRF ID13. Meteorit Planet Sci 49:1594–1611

    Article  CAS  Google Scholar 

  29. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422

    Article  CAS  Google Scholar 

  30. Van Malderen SJM, van Elteren JT, Vanhaecke F (2015) Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-mm scanning of layered materials. J Anal At Spectrom 30:119–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the USTUR for providing the samples that were investigated in this study. The USTUR is funded by US Department of Energy, Office of Domestic and International Studies (AU-13), under grant award no. DE-HS0000073. Part of this research were carried out at the light source DORIS at DESY, a member of the Helmholtz Association (HGF) and the authors wish to thank DESY-Photon Science for granting this beamlime. Eva Vergucht acknowledges the Flemish Institute for the Promotion of Scientific and Technological Research in Industry (IWT, Flanders, Belgium) for her doctoral grant. Dr. Andrei Izmer and Dr. Björn De Samber acknowledge the Research Foundation Flanders (FWO, Flanders, Belgium) for their postdoctoral grants. The SR micro-XRF measurements were partially supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 312284. The authors also thank Leen Pieters for taking care of the sample preparation and Fanny Claverie (National Institute of Standards and Technology, NIST) for providing the standard reference material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vergucht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergucht, E., De Samber, B., Izmer, A. et al. Study of the distribution of actinides in human tissues using synchrotron radiation micro X-ray fluorescence spectrometry. Anal Bioanal Chem 407, 1559–1566 (2015). https://doi.org/10.1007/s00216-014-8421-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8421-4

Keywords

Navigation