Skip to main content
Log in

Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Doped organically modified silica nanoparticles (ORMOSIL NPs) with luminescent molecules represent a potent approach to signal amplification in biomolecule labeling. Herein, we report the synthesis of new ORMOSIL NPs incorporating thermochemiluminescent (TCL) 1,2-dioxetane derivatives to prepare TCL labels for ultrasensitive immunoassay, displaying a detectability comparable to those offered by other conventional luminescence-based systems. Amino-functionalized ORMOSIL NPs were synthesized for inclusion of acridine-containing 1,2-dioxetane derivatives with a fluorescence energy acceptor. The doped ORMOSIL NPs were further functionalized with biotin for binding to streptavidin-labeled species to be used as universal detection reagents for immunoassays. A quantitative non-competitive immunoassay for streptavidin has been developed by immobilizing anti-streptavidin antibody to capture streptavidin, then the antibody-bound streptavidin was detected by the biotinylated TCL ORMOSIL NPs. The analytical performance was similar to that obtained by chemiluminescent (CL) detection using horseradish peroxidase (HRP) as label, being the limits of detection 2.5–3.8 and 0.8 ng mL−1 for TCL and CL detection, respectively. In addition, since the TCL emission is simply initiated by thermolysis of the label, chemical reagents were not required, thus allowing reagentless detection with a simplification of the analytical protocols. A compact mini dark box device based on the use of a cooled charge-coupled device (CCD) and a miniaturized heater has been developed and used to quantify the light emission after heat decomposition of the label at a temperature of 90–120 °C. These characteristics make TCL-doped ORMOSIL NPs ideal universal nanoprobes for ultrasensitive bioassays such as immuno- and DNA-based assay.

Schematic representation of the silica nanoparticles decorated with biotin and containing 1,2-dioxetane derivatives and the fluorescent energy acceptor BPEA (left); thermochemiluminescence images obtained for a model streptavidin immunoassay (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roda A, Guardigli M (2012) Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem 402:69–76

    Article  CAS  Google Scholar 

  2. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  3. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 87:36–52

    Article  CAS  Google Scholar 

  4. Luider TM, Hummelen JC, Koek JN, Oudman D, Wynberg H (1990) In: van Dyke K, van Dyke R (eds) Luminescence immunoassay and molecular applications. CRC Press, Boca Raton

    Google Scholar 

  5. Hummelen JC, Luider TM, Wynberg H (1986) Stable 1,2-dioxetanes as labels for thermochemiluminescent immunoassay. Methods Enzymol 133:531–557

    Article  CAS  Google Scholar 

  6. Hummelen JC, Luider TM, Wynberg H (1988) In: Collins WP (ed) Complementary immunoassays. John Wiley & Sons, Chichester

    Google Scholar 

  7. Roda A, Di Fusco M, Quintavalla A, Guardigli M, Mirasoli M, Lombardo M, Trombini C (2012) Dioxetane-doped silica nanoparticles as ultrasensitive reagentless thermochemiluminescent labels for bioanalytics. Anal Chem 84:9913–9919

    Article  CAS  Google Scholar 

  8. Di Fusco M, Quintavalla A, Trombini C, Lombardo M, Roda A, Guardigli M, Mirasoli M (2013) Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis. J Org Chem 78:11238–11246

    Article  Google Scholar 

  9. Miralles V, Huerre A, Malloggi F, Jullien M-C (2013) A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3:33–67

    Article  Google Scholar 

  10. Wu J, Kodzius R, Cao W, Wen W (2013) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181:1611–1631

    Article  Google Scholar 

  11. Marzocchi E, Grilli S, Della Ciana L, Prodi L, Mirasoli M, Roda A (2008) Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Anal Biochem 377:189–194

    Article  CAS  Google Scholar 

  12. Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:7860–7865

    Article  CAS  Google Scholar 

  13. Jain TK, Roy I, De TK, Maitra AN (1998) Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc 120:11092–11095

    Article  CAS  Google Scholar 

  14. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50:4056–4066

    Article  CAS  Google Scholar 

  15. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 102:279–284

    Article  CAS  Google Scholar 

  16. Hermanson GT (1996) Bioconjugate techniques, 2nd edn. Academic, San Diego

    Google Scholar 

  17. Li D, Frey MW, Vynias D, Baeumner AJ (2007) Availability of biotin incorporated in electrospun PLA fibers for streptavidin binding. Polymer 48:6340–6347

    Article  CAS  Google Scholar 

  18. Roda A, Mirasoli M, Dolci LS, Buragina A, Bonvicini F, Simoni P, Guardigli M (2011) Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal Chem 83:3178–3185

    Article  CAS  Google Scholar 

  19. Mirasoli M, Buragina A, Dolci LS, Guardigli M, Simoni P, Montoya A, Maiolini E, Girotti S, Roda A (2012) Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene. Anal Chim Acta 721:167–172

    Article  CAS  Google Scholar 

  20. Mirasoli M, Bonvicini F, Dolci LS, Zangheri M, Gallinella G, Roda A (2013) Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem 405:1139–1143

    Article  CAS  Google Scholar 

  21. Lee DC-S, Wilson T (1973) In: Cormier MJ, Hercules M, Lee J (eds) Chemiluminescence and bioluminescence. New York, Plenum

    Google Scholar 

  22. Adam W, Heil M (1992) Reaction of 1,2-dioxetanes with heteroatom nucleophiles: adduct formation by nucleophilic attack at the peroxide bond. J Am Chem Soc 114:5591–5598

    Article  CAS  Google Scholar 

  23. Rao MS, Gray J, Dave BC (2003) Smart glasses: molecular programming of dynamic responses in organosilica sol-gels. J Sol-Gel Sci Technol 26:553–560

    Article  CAS  Google Scholar 

  24. Atluri R, Sakamoto Y, Garcia-Bennett AE (2009) Co-structure directing agent induced phase transformation of mesoporous materials. Langmuir 25:3189–3195

    Article  CAS  Google Scholar 

  25. Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules, 1st edn. Academic, New York

    Google Scholar 

  26. Borisevitcha IE, Tabak M (1992) Electronic absorption and fluorescence spectroscopic studies of dipyridamole: effects of solution composition. J Lumin 51:315–322

    Article  Google Scholar 

  27. Zaklika KA, Kissel T, Thayer AL, Burns PA, Schaap AP (1979) Mechanism of 1,2-dioxetane decomposition: the role of electron transfer. Photochem Photobiol 30:35–40

    Article  CAS  Google Scholar 

  28. Menger FM, Jerkunica JM, Johnston JC (1978) The water content of a micelle interior. The Fjord vs. Reef models. J Am Chem Soc 100:4676–4678

    Article  CAS  Google Scholar 

  29. Casal HL (1988) On the water content of micelles: infrared spectroscopic studies. J Am Chem Soc 110:5203–5205

    Article  CAS  Google Scholar 

  30. Kuhn H, Breitzke B, Rehage H (1998) The phenomenon of water penetration into sodium octanoate micelles studied by molecular dynamics computer simulation. Colloid Polym Sci 276:824–832

    Article  CAS  Google Scholar 

  31. Zaklika KA, Burns PA, Schaap AP (1978) Enhanced chemiluminescence from the silica gel catalyzed decomposition of a 1,2-dioxetane. J Am Chem Soc 100:318–320

    Article  CAS  Google Scholar 

  32. Mirasoli M, Nascetti A, Caputo D, Zangheri M, Scipinotti R, Cevenini L, de Cesare G, Roda A (2014) Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph. Anal Bioanal Chem 406:5645–5656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Bologna (FARB Programme), MIUR, and the 2007–2013 Emilia Romagna Regional Operational Programme (ROP) of the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimo Di Fusco or Arianna Quintavalla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fusco, M., Quintavalla, A., Lombardo, M. et al. Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Anal Bioanal Chem 407, 1567–1576 (2015). https://doi.org/10.1007/s00216-014-8406-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8406-3

Keywords

Navigation