Skip to main content
Log in

Mass spectrometric identification, sequence evolution, and intraspecific variability of dimeric peptides encoded by cockroach akh genes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neuropeptides are structurally the most diverse group of messenger molecules of the nervous system. Regarding neuropeptide identification, distribution, function, and evolution, insects are among the best studied invertebrates. Indeed, more than 100 neuropeptides are known from single species. Most of these peptides can easily be identified by direct tissue or cell profiling using MALDI-TOF MS. In these experiments, protein hormones with extensive post-translational modifications such as inter- and intramolecular disulfides are usually missed. It is evident that an exclusion of these bioactive molecules hinders the utilization of direct profiling methods in comprehensive peptidomic analyses. In the current study, we focus on the detection and structural elucidation of homo- and heterodimeric adipokinetic hormone precursor-related peptides (APRPs) of cockroaches. The physiological relevance of these molecules with highly conserved sequences in insects is still uncertain. Sequence similarities with vertebrate growth hormone-releasing factors have been reported, but remarkably, few data regarding APRP processing exist and these data are restricted to locusts. Here, we elucidated sequences of carbamidomethylated APRP monomers of different cockroaches by means of MALDI-TOF MS2, and we were able to identify a surprisingly large number of APRP sequences, resulting either from intraspecific amino acid substitutions within the APRP sequences or C-terminal truncated APRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68(1):1–84. doi:10.1016/S0301-0082(02)00057-6

    Article  Google Scholar 

  2. Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11(6):1126–1142. doi:10.1101/gr.169901

    Article  CAS  Google Scholar 

  3. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314(5799):647–649. doi:10.1126/science.1124128

    Article  CAS  Google Scholar 

  4. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Arakane Y, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJ, Park Y (2008) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18(1):113–122. doi:10.1101/gr.6714008

    Article  CAS  Google Scholar 

  5. Roller L, Yamanaka N, Watanabe K, Daubnerová I, Žitňan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1147–1157. doi:10.1016/j.ibmb.2008.04.009

    Article  CAS  Google Scholar 

  6. Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ (2010) Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 9(4):2006–2015. doi:10.1021/pr901187p

    Article  CAS  Google Scholar 

  7. Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9(10):5296–5310. doi:10.1021/pr100570j

    Article  CAS  Google Scholar 

  8. Baggerman G, Cerstiaens A, De Loof A, Schoofs L (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277(43):40368–40374. doi:10.1074/jbc.M206257200

    Article  CAS  Google Scholar 

  9. Predel R (2001) Peptidergic neurohemal system of an insect: mass spectrometric morphology. J Comp Neurol 436(3):363–375. doi:10.1002/cne.1073

    Article  CAS  Google Scholar 

  10. Clynen E, Schoofs L (2009) Peptidomic survey of the locust neuroendocrine system. Insect Biochem Mol Biol 39(8):491–507. doi:10.1016/j.ibmb.2009.06.001

    Article  CAS  Google Scholar 

  11. Ons S, Richter F, Urlaub H, Pomar RR (2009) The neuropeptidome of Rhodnius prolixus brain. Proteomics 9(3):788–792. doi:10.1002/pmic.200800499

    Article  CAS  Google Scholar 

  12. Predel R, Neupert S, Huetteroth W, Kahnt J, Waidelich D, Roth S (2012) Peptidomics-based phylogeny and biogeography of Mantophasmatodea (Hexapoda). Syst Biol. doi:10.1093/sysbio/sys003

    Google Scholar 

  13. DeKeyser S, Li L (2007) Mass spectrometric charting of neuropeptides in arthropod neurons. Anal Bioanal Chem 387(1):29–35. doi:10.1007/s00216-006-0596-x

    Article  CAS  Google Scholar 

  14. Predel R, Eckert M, Pollák E, Molnár L, Scheibner O, Neupert S (2007) Peptidomics of identified neurons demonstrates a highly differentiated expression pattern of FXPRLamides in the neuroendocrine system of an insect. J Comp Neurol 500(3):498–512. doi:10.1002/cne.21183

    Article  CAS  Google Scholar 

  15. DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6(5):1782–1791. doi:10.1021/pr060603v

    Article  CAS  Google Scholar 

  16. Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteomics 75(16):5036–5051. doi:10.1016/j.jprot.2012.03.017

    Article  CAS  Google Scholar 

  17. Wang J, Ma M, Chen R, Li L (2008) Enhanced neuropeptide profiling via capillary electrophoresis off-line coupled with MALDI FTMS. Anal Chem 80(16):6168–6177. doi:10.1021/ac800382t

    Article  CAS  Google Scholar 

  18. Hekimi S, Burkhart W, Moyer M, Fowler E, O’Shea M (1989) Dimer structure of a neuropeptide precursor established: consequences for processing. Neuron 2(4):1363–1368. doi:10.1016/0896-6273(89)90074-3

    Article  CAS  Google Scholar 

  19. Baggerman G, Huybrechts J, Clynen E, Hens K, Harthoorn L, Van der Horst D, Poulos C, De Loof A, Schoofs L (2002) New insights in Adipokinetic Hormone (AKH) precursor processing in Locusta migratoria obtained by capillary liquid chromatography-tandem mass spectrometry. Peptides 23(4):635–644. doi:10.1016/S0196-9781(01)00657-X

    Article  CAS  Google Scholar 

  20. De Loof A, Vandersmissen T, Huybrechts J, Landuyt B, Baggerman G, Clynen E, Lindemans M, Husson SJ, Schoofs L (2009) APRP, the second peptide encoded by the adipokinetic hormone gene (s), is highly conserved in evolution. Ann N Y Acad Sci 1163(1):376–378. doi:10.1111/j.1749-6632.2008.03638.x

    Article  Google Scholar 

  21. Gäde G, Auerswald L (2003) Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 132(1):10–20. doi:10.1016/S0016-6480(03)00159-X

    Article  Google Scholar 

  22. Hatle JD, Spring JH (1999) Tests of potential adipokinetic hormone precursor related peptide (APRP) functions: lack of responses. Arch Insect Biochem Physiol 42(2):163–166. doi:10.1002/(sici)1520-6327(199910)42:2<163::aid-arch6>3.0.co;2-s

    Article  CAS  Google Scholar 

  23. De Loof A, Lindemans M, Liu F, De Groef B, Schoofs L (2012) Endocrine archeology: do insects retain ancestrally inherited counterparts of the vertebrate releasing hormones GnRH, GHRH, TRH, and CRF? Gen Comp Endocrinol 177(1):18–27. doi:10.1016/j.ygcen.2012.02.002

    Article  CAS  Google Scholar 

  24. Noyes BE, Katz FN, Schaffer MH (1995) Identification and expression of the Drosophila adipokinetic hormone gene. Mol Cell Endocrinol 109(2):133–141. doi:10.1016/0303-7207(95)03492-P

    Article  CAS  Google Scholar 

  25. Bogerd J, Kooiman FP, Pijnenburg MA, Hekking LH, Van der Oudejans RC, Van der Horst DJ (1995) Molecular cloning of three distinct cDNAs, each encoding a different adipokinetic hormone precursor, of the migratory locust, Locusta migratoria. Differential expression of the distinct adipokinetic hormone precursor genes during flight activity. J Biol Chem 270(39):23038–23043. doi:10.1074/jbc.270.39.23038

    Article  CAS  Google Scholar 

  26. Hekimi S, O’Shea M (1989) Biosynthesis of adipokinetic hormones (AKHs): further characterization of precursors and identification of novel products of processing. J Neurosci 9(3):996–1003

    CAS  Google Scholar 

  27. Hekimi S, Fischer-Lougheed J, O’Shea M (1991) Regulation of neuropeptide stoichiometry in neurosecretory cells. J Neurosci 11(10):3246–3256

    CAS  Google Scholar 

  28. Huybrechts J, Clynen E, Baggerman G, De Loof A, Schoofs L (2002) Isolation and identification of the AKH III precursor-related peptide from Locusta migratoria. Biochem Biophys Res Commun 296(5):1112–1117. doi:10.1016/S0006-291X(02)02055-7

    Article  CAS  Google Scholar 

  29. Pintér M, Lent DD, Strausfeld NJ (2005) Memory consolidation and gene expression in Periplaneta americana. Learn Mem 12(1):30–38. doi:10.1101/lm.87905

    Article  Google Scholar 

  30. Scarborough RM, Jamieson GC, Kalish F, Kramer SJ, McEnroe GA, Miller CA, Schooley DA (1984) Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc Natl Acad Sci U S A 81(17):5575–5579. doi:10.1073/pnas.81.17.5575

    Article  CAS  Google Scholar 

  31. Baumann E, Penzlin H (1984) Sequence analysis of neurohormone D, a neuropeptide of an insect, Periplaneta americana. Biomed Biochim Acta 43(7):K13

    CAS  Google Scholar 

  32. Predel R (2006) Cockroach neuropeptides: sequences, localization, and physiological actions. In: Satake H (ed) Invertebrate neuropeptides and hormones. Transworld Research Network, Kerala, pp 127–155

    Google Scholar 

  33. Holman GM, Nachman RJ, Schoofs L, Hayes TK, Wright MS, DeLoof A (1991) The Leucophaea maderae hindgut preparation: a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem 21(1):107–112. doi:10.1016/0020-1790(91)90070-U

    Article  CAS  Google Scholar 

  34. Neupert S, Fusca D, Schachtner J, Kloppenburg P, Predel R (2012) Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. J Comp Neurol 520(4):694–716. doi:10.1002/cne.22745

    Article  CAS  Google Scholar 

  35. Neupert S, Derst C, Sturm S, Predel R (2014) Identification of two capa cDNA transcripts and detailed peptidomic characterization of their peptide products in Periplaneta americana. EuPA Open Proteomics 3:195–205. doi:10.1016/j.euprot.2014.02.005

    Article  CAS  Google Scholar 

  36. Schachtner J, Wegener C, Neupert S, Predel R (2010) Direct peptide profiling of brain tissue by MALDI-TOF mass spectrometry. In: Soloviev M (ed) Peptidomics, vol 615. Methods in Molecular Biology. Humana Press, pp 129–135. doi:10.1007/978-1-60761-535-4_10

  37. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protocols 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  Google Scholar 

  38. Huang J-H, Lee H-J (2011) RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blattella germanica. J Insect Physiol 57(7):858–864. doi:10.1016/j.jinsphys.2011.03.012

    Article  CAS  Google Scholar 

  39. Lewis DK, Jezierski MK, Keeley LL, Bradfield JY (1997) Hypertrehalosemic hormone in a cockroach: molecular cloning and expression. Mol Cell Endocrinol 130(1–2):101–108. doi:10.1016/S0303-7207(97)00078-6

    Article  CAS  Google Scholar 

  40. Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard JA, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636. doi:10.1038/ncomms4636

    Article  Google Scholar 

  41. Predel R, Neupert S, Huetteroth W, Kahnt J, Waidelich D, Roth S (2012) Peptidomics-based phylogeny and biogeography of Mantophasmatodea (Hexapoda). Syst Biol 61(4):609–629. doi:10.1093/sysbio/sys003

    Article  Google Scholar 

  42. Fukuyama Y, Iwamoto S, Tanaka K (2006) Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J Mass Spectrom 41(2):191–201. doi:10.1002/jms.977

    Article  CAS  Google Scholar 

  43. Gäde G, Grandcolas P, Kellner R (1997) Structural data on hypertrehalosaemic neuropeptides from Cryptocercus punctulatus and Therea petiveriana: how do they fit into the phylogeny of cockroaches? Proc R Soc Lond B Biol Sci 264(1382):763–768. doi:10.1098/rspb.1997.0108

    Article  Google Scholar 

  44. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  CAS  Google Scholar 

  45. Djernæs M, Klass K-D, Eggleton P (2014) Identifying possible sister groups of Cryptocercidae + Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. Mol Phylogenet Evol. doi:10.1016/j.ympev.2014.08.019

    Google Scholar 

  46. Kataoka H, Nagasawa H, Isogai A, Ishizaki H, Suzuki A (1991) Prothoracicotropic hormone of the silkworm, Bombyx mori: amino acid sequence and dimeric structure. Agric Biol Chem 55(1):73–86. doi:10.1271/bbb1961.55.73

    Article  CAS  Google Scholar 

  47. Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJP, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579(10):2171–2176. doi:10.1016/j.febslet.2005.03.006

    Article  CAS  Google Scholar 

  48. Luo C-W, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger H-W, Hsueh AJW (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci U S A 102(8):2820–2825. doi:10.1073/pnas.0409916102

    Article  CAS  Google Scholar 

  49. Proux JP, Miller CA, Li JP, Carney RL, Girardie A, Delaage M, Schooley DA (1987) Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem Biophys Res Commun 149(1):180–186. doi:10.1016/0006-291X(87)91621-4

    Article  CAS  Google Scholar 

  50. Leevers SJ (2001) Growth control: invertebrate insulin surprises! Curr Biol 11(6):R209–R212. doi:10.1016/S0960-9822(01)00107-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Deutsche Forschungsgemeinschaft (PR595/6-4). The authors would like to thank Jennifer Baumbach (Chemnitz) for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Sturm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturm, S., Predel, R. Mass spectrometric identification, sequence evolution, and intraspecific variability of dimeric peptides encoded by cockroach akh genes. Anal Bioanal Chem 407, 1685–1693 (2015). https://doi.org/10.1007/s00216-014-8382-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8382-7

Keywords

Navigation