Analytical and Bioanalytical Chemistry

, Volume 407, Issue 8, pp 2035–2045 | Cite as

Discussion point: reporting guidelines for mass spectrometry imaging

  • Liam A. McDonnell
  • Andreas Römpp
  • Benjamin Balluff
  • Ron M. A. Heeren
  • Juan Pablo Albar
  • Per E. Andrén
  • Garry L. Corthals
  • Axel Walch
  • Markus Stoeckli
Feature Article
Part of the following topical collections:
  1. Mass Spectrometry Imaging


Mass spectrometry imaging (MSI) uses biomolecular mass spectrometry techniques to simultaneously record the distributions of molecules directly from tissue samples [1] and within their histological context [2]. MSI is now applied in increasingly diverse biomedical and biological applications, from the identification of clinical biomarkers [3], to the label-free quantification of drugs and metabolites [4], to revealing the molecular cartography of plant tissues [5]. The different focus areas have necessarily led to application-specific approaches, but even within the basic MSI experiment there is still much scope for methodological differences that affect the resulting data [6]. A cursory overview of an MSI experiment includes multiple aspects where differences may arise: tissue processing (e.g., embedding and storage conditions), tissue preparation (e.g., sectioning and matrix application), data acquisition (e.g., ionization method, spatial resolution, and mass analyzer),...


Mass Spectrometry Imaging Internal Reference Standard MALDI Mass Spectrometry Imaging Mass Spectrometry Imaging Data Mass Spectrometry Imaging Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by COST Action BM1104, entitled Imaging Mass Spectrometry: New Tools for Healthcare Research.


  1. 1.
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7:493–496CrossRefGoogle Scholar
  2. 2.
    Walch A, Rauser S, Deininger S-O, Höfler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130:421–434CrossRefGoogle Scholar
  3. 3.
    Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry – looking beyond classical histology. Nat Rev Cancer 10:639–646CrossRefGoogle Scholar
  4. 4.
    Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteomics 75:4999–5013CrossRefGoogle Scholar
  5. 5.
    Bjarnholt N, Li B, D’Alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites – principles and possibilities. Nat Prod Rep 31:818–837CrossRefGoogle Scholar
  6. 6.
    Goodwin RJA (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 75:4893–4911CrossRefGoogle Scholar
  7. 7.
    Dufresne M, Thomas A, Breault-Turcot J, Masson J-F, Chaurand P (2013) Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem 85:3318–3324CrossRefGoogle Scholar
  8. 8.
    Li Y, Shrestha B, Vertes A (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal Chem 80:407–420CrossRefGoogle Scholar
  9. 9.
    Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A 105:18120–18125Google Scholar
  10. 10.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:141–148CrossRefGoogle Scholar
  11. 11.
    Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordström A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036CrossRefGoogle Scholar
  12. 12.
    Bich C, Touboul D, Brunelle A (2014) Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue. Mass Spectrom Rev 33(6):442–451Google Scholar
  13. 13.
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. doi: 10.1038/nmeth.2869 Google Scholar
  14. 14.
    Goodwin RJA, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, Iverson SL (2011) Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 83:9694–9701CrossRefGoogle Scholar
  15. 15.
    Römpp A, Guenther S, Schober Y, Schultz O, Takats Z, Kummer W, Spengler B (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed 49:3834–3838CrossRefGoogle Scholar
  16. 16.
    Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708CrossRefGoogle Scholar
  17. 17.
    Taylor CF, Paton NW, Lilley KS, Binz P-A, Randall K, Julian J, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, John R, Yates IHH (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893CrossRefGoogle Scholar
  18. 18.
    Taylor CF, Binz P-A, Aebersold R, Affolter M, Barkovich R, Deutsch EW, Horn DM, Huhmer A, Kussmann M, Lilley K, Macht M, Mann M, Muller D, Neubert TA, Nickson J, Patterson SD, Raso R, Resing K, Seymour SL, Tsugita A, Xenarios I, Zeng R, Julian RK (2008) Guidelines for reporting the use of mass spectrometry in proteomics. Nat Biotechnol 26(8):860–861CrossRefGoogle Scholar
  19. 19.
    Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, Rompp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M, Reisinger F, Souda P, Hermjakob H, Binz P-A, Deutsch EW (2011) mzML - a community standard for mass spectrometry data. Mol Cell Proteomics 10(1):R110.000133. doi: 10.1074/mcp.R1110.000133
  20. 20.
    Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz P-A, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus H-J, Albar JP, Martinez-Bartolome S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226CrossRefGoogle Scholar
  21. 21.
    Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprévote O, Desbenoit N, Robbe M-F, Stoeckli M, Spengler B, Römpp A (2012) imzML — a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome 75(16):5106–5110CrossRefGoogle Scholar
  22. 22.
    Römpp A, Wang R, Albar JP, Urbani A, Spengler B, Hermjakob H, Vizcaino JA (2014) A public data repository for mass spectrometry imaging data. Anal Bioanal Chem. doi: 10.1007/s00216-014-8357-8
  23. 23.
  24. 24.
    imzML (2014) imzML controlled vocabulary - scan pattern description. Accessed 5 Sept 2014
  25. 25.
    Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NYR (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–654CrossRefGoogle Scholar
  26. 26.
    Thomas A, Patterson NH, Marcinkiewicz MM, Lazaris A, Metrakos P, Chaurand P (2013) Histology-driven data mining of lipid signatures from multiple imaging mass spectrometry analyses: application to human colorectal cancer liver metastasis biopsies. Anal Chem 85(5):2860–2866CrossRefGoogle Scholar
  27. 27.
    Veselkov KA, Mirnezami R, Strittmatter N, Goldin RD, Kinross J, Speller AVM, Abramov T, Jones EA, Darzi A, Holmes E, Nicholson JK, Takats Z (2014) Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. PNAS 111:1216–1221CrossRefGoogle Scholar
  28. 28.
    Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA, Clements MA, Drake RR, Semmes OJ (2009) Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 15(17):5541–5551CrossRefGoogle Scholar
  29. 29.
    Balluff B, Rauser S, Meding S, Elsner M, Schoene C, Feuchtinger A, Schuhmacher C, Novotny A, Juetting U, Maccarrone G, Sarioglu H, Ueffing M, Braselmann H, Zitzelsberger H, Schmid RM, Hoefler H, Ebert MP, Walch A (2011) MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. Am J Pathol 179:2720–2729CrossRefGoogle Scholar
  30. 30.
    Pote N, Alexandrov T, Le Faouder J, Laouirem S, Leger T, Mebarki M, Belghiti J, Camadro JM, Bedossa P, Paradis V (2013) Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas. Hepatology 58(3):983–994Google Scholar
  31. 31.
    Jones EA, Dieninger S-O, Hogendoorn PCW, Deelder AM, McDonnell LA (2012) Imaging mass spectrometry statistical analysis. J Proteomics 75:4962–4989CrossRefGoogle Scholar
  32. 32.
    Djidja M-C, Claude E, Snel MF, Francese S, Scriven P, Carolan V, Clench MR (2010) Novel molecular tumour classification using MALDI–mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397:587–601CrossRefGoogle Scholar
  33. 33.
    Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8(18):3715–3724CrossRefGoogle Scholar
  34. 34.
    Dekker TJA, Balluff BD, Jones EA, Schöne CD, Schmitt M, Aubele M, Kroep JR, Smit VTHBM, Tollenaar RAEM, Mesker WE, Walch A, McDonnell LA (2014) Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-cancer-associated stroma. J Proteome Res 13(11):4730–4738Google Scholar
  35. 35.
    Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andrén PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS ONE 5(7):e11411CrossRefGoogle Scholar
  36. 36.
    Castellino S, Groseclose MR, Wagner D (2011) MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3:2427–2441CrossRefGoogle Scholar
  37. 37.
    Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260:195–202CrossRefGoogle Scholar
  38. 38.
    Källback P, Shariatgorji M, Nilsson A, Andrén PE (2012) Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteomics 75:4941–4951CrossRefGoogle Scholar
  39. 39.
    Hopfgartner G, Varesio E, Stoeckli M (2009) Matrix-assisted laser desorption/ionization mass spectrometric imaging of complete rat sections using a triple quadrupole linear ion trap. Rapid Commun Mass Spectrom 23(6):733–736CrossRefGoogle Scholar
  40. 40.
    Hsieh Y, Casale R, Fukuda E, Chen J, Knemeyer I, Wingate J, Morrison R, Korfmacher W (2006) Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20:965–972CrossRefGoogle Scholar
  41. 41.
    Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos J-M, Bouzom F, Stauber J (2012) Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteomics 75:4952–4961CrossRefGoogle Scholar
  42. 42.
    Römpp A, Guenther S, Takats Z, Spengler B (2011) Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level. Anal Bioanal Chem 401:65–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Liam A. McDonnell
    • 1
    • 2
  • Andreas Römpp
    • 3
  • Benjamin Balluff
    • 1
  • Ron M. A. Heeren
    • 4
  • Juan Pablo Albar
    • 5
  • Per E. Andrén
    • 6
  • Garry L. Corthals
    • 7
  • Axel Walch
    • 8
  • Markus Stoeckli
    • 9
  1. 1.Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Fondazione Pisana per la Scienza ONLUSPisaItaly
  3. 3.Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
  4. 4.FOM Institute AMOLFAmsterdamThe Netherlands
  5. 5.ProteoRed-ISCIIINational Center for Biotechnology-CSICMadridSpain
  6. 6.Department of Pharmaceutical Biosciences, Medical Mass SpectrometryUppsala UniversityUppsalaSweden
  7. 7.van’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  8. 8.Institute of PathologyHelmholtz Zentrum MünchenNeuherbergGermany
  9. 9.Novartis Institutes of BioMedical Research, Analytical SciencesBaselSwitzerland

Personalised recommendations